Skip to main content

Offspring size in Daphnia: does it pay to be overweight?

  • Conference paper
Cladocera: the Biology of Model Organisms

Part of the book series: Developments in Hydrobiology ((DIHY,volume 126))

Abstract

Variation in offspring size and number has been described for a wide range of organisms. In this study I investigated the relationship between resource level of the mother and size of her offspring in the cladoceran Daphnia magna, in order to assess whether offspring produced at different food levels are optimal in size for these food levels. Optimal offspring size was defined as the size of offspring that yields the highest parental fitness (i.e. offspring of optimal size have the highest juvenile fitness per unit maternal effort invested in them). I observed that especially at the higher food levels, daphnids produced offspring that are larger than the computed optimal offspring size at these food levels. I interpret this as a mechanism to avoid starvation of neonates in the case of suddenly deteriorating food conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bell, G., 1983. Measuring the cost of reproduction. 3. The correlation structure of the early life history of Daphnia pulex. Oecologia 60: 378–383.

    Article  Google Scholar 

  • Boersma, M., 1995. The allocation of resources to reproduction in Daphnia galeata: Against the odds? Ecology 76: 1251–1261.

    Article  Google Scholar 

  • Boersma, M, 1997. Offspring size and parental fitness in Daphnia magna. Evol. Ecol.: 11: 439–450.

    Article  Google Scholar 

  • Boersma, M, O. F. R. van Tongeren & W. M. Mooij, 1996. Seasonal patterns in the mortality of Daphnia species in a shallow lake. Can. J. Fish, aquat. Sci. 53: 18–28.

    Article  Google Scholar 

  • Bradley, M. C, D. J. Baird & P. Calow, 1991. Mechanisms of energy allocation to reproduction in the cladoceran Daphnia magna Straus. Biol. J. Linn. Soc. 44: 325–333.

    Article  Google Scholar 

  • De Meester, L., 1994. Life histories and habitat selection in Daphnia — divergent life histories of D. magna clones differing in phototactic behaviour. Oecologia 97: 333–341.

    Google Scholar 

  • Ebert, D., 1993. The trade-off between offspring size and number in Daphnia magna — the influence of genetic, environmental and maternal effects. Arch. Hydrobiol. Suppl. 90: 453–473.

    Google Scholar 

  • Ebert, D., 1994. Fractional resource allocation into few eggs — Daphnia as an example. Ecology 75: 568–571.

    Article  Google Scholar 

  • Ebert, D. & J. Jacobs, 1991. Differences in life-history and aging in 2 clonal groups of Daphnia cucullata Sars (Crustacea, Cladocera). Hydrobiologia 225: 245–253.

    Article  Google Scholar 

  • Ebert, D. & L. Y. Yampolsky, 1992. Family planning in Daphnia: when is clutch size determined? Russian J. aquat. Ecol. 2: 143–148.

    Google Scholar 

  • George, D. G. & R. W. Edwards, 1976. The effect of wind on the distribution of chlorophyll a and crustacean plankton in a shallow eutrophic reservoir. J. appl. Ecol. 13: 667–692.

    Article  CAS  Google Scholar 

  • Glazier, D. S., 1992. Effects of food, genotype, and maternal size and age on offspring investment in Daphnia magna. Ecology 73: 910–926.

    Article  Google Scholar 

  • Guisande, C. & Z. M. Gliwicz, 1992. Egg size and clutch size in 2 Daphnia species grown at different food levels. J. Plankton Res. 14: 997–1007.

    Article  Google Scholar 

  • Harris, G. P., 1980. Temporal and spatial scales in phytoplankton ecology. Mechanisms, methods, models, and management. Can. J. Fish, aquat. Sci. 37: 877–900.

    Article  Google Scholar 

  • Jeppesen, E., M. Søndergaard, O. Sortkjær, E. Mortensen & P. Kristensen, 1990. Interactions between phytoplankton, Zooplankton and fish in a shallow, hypertrophic lake: a study of phytoplankton collapses in Lake Søbygård, Denmark. Hydrobiologia 191: 149–164.

    Article  Google Scholar 

  • Lack, D., 1947. The significance of clutch size. Ibis 89: 309–352.

    Google Scholar 

  • Lampert, W., 1993. Phenotypic plasticity of the size at first reproduction in Daphnia: the importance of maternal size. Ecology 74: 1455–1466.

    Article  Google Scholar 

  • Lampert, W. & I. Trubetskova, 1996. Juvenile growth rate as a measure of fitness in Daphnia. Funct. Ecol. 10: 631–635.

    Article  Google Scholar 

  • Lampert, W., R. D. Schmitt & P. Muck, 1988. Vertical migration of freshwater Zooplankton: test of some hypotheses predicting a metabolic advantage. Bull. Mar. Sci. 43: 620–640.

    Google Scholar 

  • Lynch, M. & R. Ennis, 1983. Resource availability, maternal effects, and longevity. Exper. Geront. 18: 147–165.

    Article  CAS  Google Scholar 

  • Malone, B. J. & D. J. McQueen, 1983. Horizontal patchiness in zoo-plankton populations in two Ontario kettle lakes. Hydrobiologia 99: 101–124.

    Article  Google Scholar 

  • Müller-Navarra, D., 1993. Quantifizierung von Nahrungsqualität für herbivores Zooplankton. PhD Thesis, University of Kiel, 137 pp.

    Google Scholar 

  • Parker, G. A. & M. Begon, 1986. Optimal egg size and clutch size: effects of environment and maternal phenotype. Am. Nat. 128: 573–592.

    Article  Google Scholar 

  • Ridley, M., 1993. Evolution. Blackwell. Boston, 670 pp.

    Google Scholar 

  • Smith C. C. & S. D. Fretwell, 1974. The optimal balance between size and number of offspring. Am. Nat. 108: 499–506.

    Article  Google Scholar 

  • Sokal, R. R. & F. J. Rohlf, 1981. Biometry. Freeman and Company, San Francisco.

    Google Scholar 

  • Spaak, P. & J. R. Hoekstra, 1995. Life history variation and the coexistence of a Daphnia hybrid with its parental species. Ecology 76: 553–564.

    Article  Google Scholar 

  • Spitze, K., 1992. Predator-mediated plasticity of prey life history and morphology — Chaoborus americanus predation on Daphnia pulex. Am. Nat. 139: 229–247.

    Article  Google Scholar 

  • Stearns, S. C, 1992. The Evolution of Life Histories. Oxford University Press, Oxford, 249 pp.

    Google Scholar 

  • Stibor, H., 1995. Chemische Informationen in limnischen Räuber-Beute Systemen: Der Effekt von Räubersignalen auf den Lebenszyklus von Daphnia spp. (Crustacea: Cladocera). PhD Thesis, University of Kiel, 150 pp.

    Google Scholar 

  • Tessier, A. J. & N. L. Consolatti, 1989. Variation in offspring size in Daphnia and consequences for individual fitness. Oikos 56: 269–276.

    Article  Google Scholar 

  • Tessier, A. J. & N. L. Consolatti, 1991. Resource quantity and offspring quality in Daphnia. Ecology 72: 468–478.

    Article  Google Scholar 

  • Tessier, A. J., L. L. Henry, C. E. Goulden & M. W. Durand, 1983. Starvation in Daphnia: Energy reserves and reproductive allocation. Limnol. Oceanogr. 28: 667–676.

    Article  Google Scholar 

  • Threlkeld, S. T., 1976. Starvation and the size structure of Zooplankton communities. Freshwat. Biology 6: 489–496.

    Article  Google Scholar 

  • van Noordwijk, A. J. & G. de Jong, 1986. Acquisition and allocation of resources: their influence on variation in life history tactics. Am. Nat. 128: 137–142.

    Article  Google Scholar 

  • Vijverberg, J. & A. F. Richter, 1982. Population dynamics and production of Daphnia hyalina Leydig and Daphnia cucullata Sars in Tjeukemeer. Hydrobiologia 95: 235–259.

    Article  Google Scholar 

  • Vijverberg, J., R. D. Gulati & W. M. Mooij, 1993. Food-web studies in shallow eutrophic lakes by the Netherlands Institute of Ecology: Main results, knowledge gaps and new perspectives. Neth. J. aquat. Ecol. 27: 35–49.

    Article  Google Scholar 

  • Weider, L. J., 1993. Niche breadth and life history variation in a hybrid Daphnia complex. Ecology 74: 935–943.

    Article  Google Scholar 

  • Winkler, D. W. & K. Wallin, 1987. Offspring size and number: a life history model linking effort per offspring and total effort. Am. Nat. 129: 708–720.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

A. Brancelj L. De Meester P. Spaak

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Boersma, M. (1997). Offspring size in Daphnia: does it pay to be overweight?. In: Brancelj, A., De Meester, L., Spaak, P. (eds) Cladocera: the Biology of Model Organisms. Developments in Hydrobiology, vol 126. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4964-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4964-8_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6084-4

  • Online ISBN: 978-94-011-4964-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics