Skip to main content

The-State-of-the-Art of Nanostructured High Melting Point Compound-Based Materials

  • Chapter
Nanostructured Materials

Part of the book series: NATO ASI Series ((ASHT,volume 50))

Abstract

High-melting compounds (HMC) are carbides, nitrides, borides, oxides and other compounds with the melting point (T m) above 2000°C (or even 2500°C). These limits are very conditional because there are no physical reasons for this selection but only considerations of convenience. As cited in [1], two-component HMC systems number at least 130, with T m>2500°C, and about 240, with T m.>2000°C. The number of well-studied and practically used HMCs is much less. This overview concerns HMCs that were most extensively studied such as TiN, TiC, TiB2, WC, AlN, Al2O3, Si3N4, SiC, BN, B4C, ZrO2, MgO, CeO2, Y2O3 and some others. These compounds may be described as advanced ceramics and their promising properties and wide application are well known.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrievski, R.A. and Spivak, I.I. (1989) Strength of High-Melting Compounds and Materials on Their Base, Metallurgiya, Chelyabinsk (in Russian).

    Google Scholar 

  2. Andrievski, R.A. (1994) Review–Nanocrystalline high melting compound-based materials, J. Mater. Sci. 29, 614–631.

    Article  CAS  Google Scholar 

  3. Gleiter, H. (1981) Nanocrystalline materials, in N.Hansen, T.Leffers, and H.Lilholt (eds.), Deformation of Polycrystals: Mechanisms and Microstructures, Riso National Laboratory, Roskilde, pp. 15–21.

    Google Scholar 

  4. Birringer, R., Herr, U, and Gleiter, H. (1986) Processing and properties of nanocrystalline materials, Trans. Jpn. Inst. Met. Suppl. 27, 43–52.

    Google Scholar 

  5. Andrievski, R.A.(in press) The-state-of-the-art and perspectives in the field of particulate nanostructured materials, Powder Metallurgy(Minsk) (in Russian).

    Google Scholar 

  6. Nastasi, M., Parkin, D.M., and Gleiter, H.(eds.) (1993), Mechanical Properties and Deformation Behaviour of Materials Having Ultra-Fine Microstructures, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  7. Hadjipanayis, G.C. and Siegel, R.W. (eds.) (1994), Nanophase Materials. Synthesis - Properties - Applications, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  8. Gleiter, H. (1995) Nanostructured materials: state of the art and perspectives, Nanostruct. Mater. 6, 3–14.

    Article  CAS  Google Scholar 

  9. Siegel, R. (1996) Recent progress in nanophase materials, in C.Suryanarayana, J. Singh, and F.H. Froes (eds.), Processing and Properties of Nanocrystalline Materials, The Minerals, Metals & Materials Society, Warrendale, pp. 3–10.

    Google Scholar 

  10. Andrievski, R.A. (1996) Processing and properties evolution of nanocrystalline particulate and films materials based on nitrides and borides, in C.Suryanarayana, J. Singh, and F.H. Froes (eds.), Processing and Properties of Nanocrystalline Materials, The Minerals, Metals & Materials Society, Warrendale, pp. 135–142.

    Google Scholar 

  11. Andrievski, R.A. (1996) Possibility of powder technology in processing advanced nanocrystalline particulate materials, in A. Clayton and L. Youngberg (comps.), Advances in Powder Metallurgy and Particulate Materials -1996,vol.1, Metal Powder Industry Federation, Princeton, pp.(2–79)-(2–88).

    Google Scholar 

  12. Suryanarayana, C. (1995) Nanocrystalline materials, Int. Mater. Rev. 40, 41–64.

    Article  CAS  Google Scholar 

  13. Chang, W., Skandan, G., Danforth, S.C., Kear, B.H., and Halm, H. (1994) Chemical vapour processing and applications for nanostructured ceramic powders and whiskers, Nanostruct. Mater. 4, 507–520.

    Article  CAS  Google Scholar 

  14. Hahn, H. (1997) Gas-phase synthesis of nanocrystalline materials, Nanostruct. Mater. 9, 3–12.

    Article  CAS  Google Scholar 

  15. Chen, Y., Glumac, N., Kear, B.H., and Skandan, G. (1997) High rate synthesis of nanophase materials, Nanostruct. Mater. 9, 101–104.

    Article  Google Scholar 

  16. Gillan, E.C. and Kaner R.B. (1996) Synthesis of refractory ceramics via rapid metathesis reactions between solid-state precursors, Chem. Mater. 8, 333–343.

    Article  CAS  Google Scholar 

  17. Kotov, Yu.A., Azarkevich, E.I., Beketov, I.V., Demina, T.M., Murzakaev, A.M., and Samatov, O.M. (1997) Producing Al and Al2O3 nanopowders by electrical explosion of wire, Key Eng. Mater. 132–136, 173–176.

    Article  Google Scholar 

  18. Nowakowski, M., Su, K., Sneddon, L., and Bonnet, D. (1993) Synthesis, processing and phase evolution of TiN/TiB2 composites from polymeric precursors, in S. Komarneni, J.C. Parker, and G.J. Thomas (eds.), Nanophase and Nanocomposite Materials, Materials Research Society, Pittsburgh, pp. 425–430.

    Google Scholar 

  19. Matteazzi, P., Le Gaer, G., and Mocellin, A. (1997) Synthesis of nanostructured materials by mechanical alloying, Ceram. Int. 23, 39–44.

    Article  CAS  Google Scholar 

  20. Koch, C.C. (1997) Synthesis of nanostructured materials by mechanical milling: problems and opportunities, Nanostruct. Mater. 9, 13–22.

    Article  CAS  Google Scholar 

  21. Bill, J. and Aldinger, F. (1995) Precursor-derived covalent ceramics, Adv. Mater. 7, 775–787.

    Article  CAS  Google Scholar 

  22. Lavernia, E.J. (1998) Thermal spraying of nanocrystalline materials, in G.M. Chow (ed.), Nanostructured Materials: Science and Technology, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  23. Mayo, M. (1998) Nanocrystalline ceramics for structural applications: protes-sing and properties, in G.M. Chow (ed.), Nanostructured Materials: Science and Technology, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  24. Skorokhod, V.V. (1998) Features of nanocrystalline structure formation on sintering of ultrafine powders, in G.M. Chow (ed.), Nanostructured Materials: Science and Technology, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  25. Urbanovich, V.S. (1998) Consolidation of nanocrystalline materials at high pressures, in G.M. Chow (ed.), Nanostructured Materials: Science and Technology, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  26. Ivanov, V., Paranin, S., and Nozdrin, A. (1997) Principles of pulsed compaction of ceramic nano-sized powders, Key Eng. Mater. 132–136, 400–403.

    Google Scholar 

  27. Vassen, R., Kaiser, A., Forster, J., Buchkremer, H.P., and Stover, D. (1996) Densification of ultrafine SiC powders, J. Mater. Sci. 31, 3623–3637.

    Article  CAS  Google Scholar 

  28. Ragulya, A.V., Skorokhod, V.V., and Andrievski, R.A. (1997, in press) Rate-controlled sintering of nanocrystalline TiN powder, Nanostruct. Mater. 8.

    Google Scholar 

  29. Risbud, S.H., Shan, C.-H., Mukherjee, A.K., Kim, M.J., Bow, J.S., and Holl, R.A. (1995) Retention of nanostructure in aluminium oxide by very rapid sintering, J. Mater. Res. 10, 237–239.

    Article  CAS  Google Scholar 

  30. Schneider, J.A., Risbud, S.H., and Mukherjee (1996) Rapid consolidation processing of silicon nitride powders, J. Mater. Res. 11, 358–362.

    Article  CAS  Google Scholar 

  31. Kear, B.H. and McCandish, L.E. (1993) Nanostructured hard alloys, Nanostruct. Mater. 3, 19–25.

    Article  CAS  Google Scholar 

  32. Mohan, K. and Strutt, P.R. (1996) Observation of Co nanoparticle dispersions in WC nanograins in WC-Co cermets consolidated from chemically synthesised powders, Nanostruct. Mater. 7, 547–555.

    Article  CAS  Google Scholar 

  33. Porat, R., Berger,S. and Rosen, A. (1996) Dilatometric study of the sintering mechanism of nanocrystalline cemented carbides, Nanoctruct. Mater. 7, 429–436.

    Article  CAS  Google Scholar 

  34. Hague, D.C. and Mayo, M.J. (1995) Modelling densification during sinter-forging of yttria-partally-stabilized zirconia, Mater. Sci. Eng. A204, 83–89.

    CAS  Google Scholar 

  35. Boutz, M.M.R., Winnubst, L., and Burggraaf, A.J. (1995) Low-temperature sinter-forging of nanostructured Y-TZP and YCe-TZP, J. Am. Ceram. Soc. 78, 121–128.

    Article  CAS  Google Scholar 

  36. Hirai, H. and Kondo, K. (1994) Shock-compaction Si3N4 nanocrystalline ceramics: mechanisms of consolidation and of transition from α-to β- form, J. Am. Ceram. Soc. 77, 487–492.

    Article  CAS  Google Scholar 

  37. Andrievski, R.A. (1997) Physical-mechanical properties of nanostructured TiN, Nanostruct. Mater. 9, 607–610.

    Article  CAS  Google Scholar 

  38. Ogino, Y. (1996) Mechanical nitriding and its application to production of nano-crystalline metal-nitride dual phase alloys, in C. Suryanarayana, J. Singh, and F.H Froes (eds.), Processing and Properties of Nanocrystalline Materials, The Minerals, Metals & Materials Society, Warrendale, pp. 81–92.

    Google Scholar 

  39. Kizuka, T., Ichinose, H., and Ishida, Y. (1994) Structure and mechanical properties of nanocrystalline Ag/MgO composites, J. Mater. Sci. 29, 3107–3112.

    Article  CAS  Google Scholar 

  40. Cottom, B.A. and Mayo, M.J. (1996) Fracture toughness of nanocrystalline ZrO2-3%Y2O3 determined by Vickers indentation, Scripta Mater. 34, 809–814.

    Article  CAS  Google Scholar 

  41. Kovtun, V.I., Kurdiumov, A.V., Zeliayskiy, V.B., Ostrovskaja, N.F., and Trefilov, V.I. (1992) Sintering of BN in shock waves, No12, 38–44 (in Russian).

    Google Scholar 

  42. Inamura, S., Miyamoto, M., Imaida, Y., Takagawa, M., Hirota, K., and Yamaguchi, O. (1993) High fracture toughness of ZrO2 solid solution ceramics with nano-metre grain size in the system ZrO2-Al2O3, J. Mater. Sci. Lett. 12, 1368–1370.

    Article  CAS  Google Scholar 

  43. Jeong, Y.K. and Niihara, K. (1997) Microstructure and mechanical properties of pressureless sintered Al2O3/SiC nanocomposites, Nanostruct. Mater. 9, 193–196.

    Article  CAS  Google Scholar 

  44. Bamba, N., Choa, Y.H., and Niihara, K. (1997) Fabrication and mechanical properties of nanosized SiC particulate reinforced yttria stabilized zirconia composites, Nanostruct. Mater. 9, 497–500.

    Article  CAS  Google Scholar 

  45. Choa, Y.H., Kawaoka, H., Sekino, T., and Niihara, K. (1997) Microstructure and mechanical properties of oxide based nanocomposites fabricated by spark plas-ma sintering, Key Eng. Mater. 132–136, 2009–2012.

    Article  Google Scholar 

  46. Scitti, D., Fabbriche D.D., and Bellosi, A. (1997) Fabrication and characteristics of Al2O3/SiC nanocomposites, Key Eng. Mater. 132–136, 2001–2004.

    Article  Google Scholar 

  47. Li, G., Jiang, A., and Zhang L. (1996) Mechanical and fracture properties of nano- Al2O3 alumina, J. Mater. Sci. Lett. 15, 1713–1715.

    Article  CAS  Google Scholar 

  48. Andrievski, R.A., Kalinnikov, G.V., and Urbanovich, V.S. (1997) Consolidation and evolution of physical-mechanical properties of nanocomposite materials based on high-melting compounds, in S. Komarneni, J.C. Parker, and H.J. Wollenberger (eds.), Nanophase and Nanocomposite Materials II, vol. 457, Materials Research Society, Pittsburgh.

    Google Scholar 

  49. Andrievski, R.A., Urbanovich, V.S., and Shipilo, V.B. (in press) Fracture toughness of nitride/boride nanocomposites obtained by high-pressure sintering, Powder Metallurgy (Kiev) (in Russian).

    Google Scholar 

  50. Andrievski, R.A., Ivannikov, V.T., and Urbanovich, V.S. (1994) Creep studies in Si3N4-TiB2 materials, Key Eng. Mater. 89–91, 445–448.

    Google Scholar 

  51. Wakai, F., Kondo, N., Ogawa, H., Nagano, T., and Tsurekawa (1996) Ceramics superplasticity: deformation mechanisms and microstructures, Mater. Character. 37, 331–341.

    Article  CAS  Google Scholar 

  52. Burger, P., Duclos, R., and Crampon, J. (1997) Superplastic behaviour of low-doped silicon nitride, Mater. Sci. Eng. A222, 175–181.

    CAS  Google Scholar 

  53. Kalia, R.K., Nakano, A., Tsurita, K., Vashishta, P. (in press) Morphology of po-res and interfaces and mechanical behaviour of nanocluster-assembled silicon nitride ceramic, Phys. Rev. Lett.

    Google Scholar 

  54. Andrievski, R.A. (1995) Silicon nitride: synthesis and properties, Russ. Chem. Rev. 64, 291–308.

    Article  Google Scholar 

  55. Wang, T., Zhang, L., and Mo, C. (1994) A study on growth and crystallisation behaviour of nanostructured amorphous Si3N4, Nanostruct. Mater. 4, 207–213.

    Article  CAS  Google Scholar 

  56. Li, Y.-L., Liang Y., and Hu, Z.-Q. (1994) Crystallisation and phase development of nanometric amorphous Si-N-C powders, Nanostruct. Mater. 4, 857–864.

    Article  CAS  Google Scholar 

  57. Zhang, L., Mo, C., Wang, T., Cai, S., and Xie, C. (1993) Structure and bond properties of compacted and heat-treated silicon nitride particles, Phys. Stat. Sol. 136, 291–300.

    Article  CAS  Google Scholar 

  58. Wang, T., Zhang, L., Mo., C., Hu, J., and Xie, C. (1993) A study of defects in nanostructured amorphous silicon nitride, Phys. Stat. Sol. 139, 303–307.

    CAS  Google Scholar 

  59. Wang, T., Zhang, L., and Mou, J. (1993) Anomalous dielectric behaviour in nanometer-sized amorphous silicon nitride, Chin. Phys. Lett. 10, 676–679.

    Article  CAS  Google Scholar 

  60. Wang, T., Zhang, L., Hu, J., and Mo, J. (1993) Study of dangling bonds in nanometer-sized granulate silicon nitride by electron-spin resonance, J. Appl. Phys. 74, 6313–6316.

    CAS  Google Scholar 

  61. Leone,E.A., Curran,S., Kotun, M.E., Carrasquillo,G., Weeren,R., and Danforth,C. (1996) Solid-State 29Si NMR analysis of amorphous silicon nitride powder, J. Am. Ceram. Soc. 79, 513–517.

    Article  CAS  Google Scholar 

  62. Bendeddouche, A., Berjoan, R., Bache, E., Merle-Mejean, T., Schamm, S., Taillades, G., Pradel, A., and Hillel, R. (1997) Structural characterisation of amorphous SiCxNy chemical vapour deposited coatings, J. Appl. Phys. 81, 6147–6154.

    Article  Google Scholar 

  63. Andrievski, R.A., Konyaev, Yu.S., Leontiev, M.A., and Pivovarov, G.I. (1989) The influence of high pressures on structure and properties of silicon nitride, High Pressure Research 1, 329–331.

    Article  Google Scholar 

  64. Chaim, R. (1992) Fabrication and characterisation of nanocrystalline oxides by crystallisation of amorphous precursors, Nanostruct. Mater. 1, 479–489.

    Article  CAS  Google Scholar 

  65. Holleck, H. and Lahres, M. (1991) Two-phase TiC/TiB2 hard coatings, Mater. Sci. Eng. A140, 609–615.

    CAS  Google Scholar 

  66. Kester, D.J., Ailey, K.S., Davis, R.F., and More, K.L. (1993) Phase evolution in boron nitride thin films, J. Mater. Res. 8, 1213–1216.

    Article  CAS  Google Scholar 

  67. Kung, H., Jervis, T.R., Hirvonen, J-P., Mitchel, T.E., and Nastasi, M. (1996) Synthesis, structure and mechanical properties of nanostructured MoSi2Nx, Nanostructur. Mater. 7, 81–88.

    Article  CAS  Google Scholar 

  68. Andrievski, R.A. (1997) The synthesis and properties of interstitial phase films, Russ. Chem. Rev. 66, 53–72.

    Article  Google Scholar 

  69. Andrievski, R.A. (1997) The synthesis and properties of interstitial phase films, Russ. Chem. Rev. 66, 53–72.

    Article  Google Scholar 

  70. Kim, L.S., Chang, H., and Averback, R.S. (1993) Nanophase processing of amorphous alloys, J. Alloys Comp. 194, 245–249.

    Article  CAS  Google Scholar 

  71. Trudeau, M.L. (1995) Engineering nanocrystalline materials from amorphous precursors, Mater. Sci. Eng. A204, 233–239.

    CAS  Google Scholar 

  72. Lu, K. (1996) Nanocrystalline materials crystallised from amorphous solids: nanocrystallisation, structure, and properties, Mater. Sci. Eng. R 16, 161–221.

    Article  Google Scholar 

  73. Greer, A.L. (1998) Changes in structure and properties associated with the transition from the amorphous to the crystalline state, in G.M. Chow (ed.), Nanostructured Materials: Science and Technology, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  74. Zhang, H.Y., Lu, K., and Hu, Z.Q. (1995) Transformation from the amorphous to the nanocrystalline state in a pure selenium, Nanostruct. Mater. 5, 41–50.

    Article  CAS  Google Scholar 

  75. Lu, K., Liu, X.D., and Yuan, F.H. (1996) Synthesis of the NiZr2 initermetallic compound nanophase materials, Physica B 217 153–159.

    Google Scholar 

  76. Sundgren, J. and Hultman, L. (1995) Growth, structure and properties of hard nitride based coatings and multilayers, in Y. Pauleau (ed.), Materials and Proce-sses and Interface Engineering, Kluwer Academic Publishers, Dordrecht, pp. 453–474.

    Chapter  Google Scholar 

  77. Hocking, M.G., Vasantasree, V.S., and Sidky, P.S. (1989) Metallic and Ceramic Coatings: Production, High-Temperature Properties and Applications, Longman, Harlow.

    Google Scholar 

  78. Konuma, M. (1992) Film Deposition by Plasma Techniques,Springer Verlag. Berlin.

    Book  Google Scholar 

  79. Andrievski, R.A., Kalinnikov, G.V., Kobelev, N.P., Soifer, Ya.M., and Shtansky. D.V. (in press) Structure and physical-mechanical properties of nanostructured boride/nitride films, Phys. Solid State (in Russian).

    Google Scholar 

  80. Sue, J.A. (1993) Development of arc evaporation of non-stoichiometric titanium nitride coatings, Surf Coat. Technol. 61, 115–120.

    Article  CAS  Google Scholar 

  81. Bendavid, A., Martin, P.J., Netterfield, R.P., and Kinder, T.J. (1994) The properties of TiN films deposited by filtered arc evaporation, Surf Coat. Technol. 70, 97–104.

    Article  CAS  Google Scholar 

  82. Barnett, S.A. (1993) Deposition and mechanical properties of superlattice thin films, in M.H. Francombe and J.L. Vossen (eds.), Physics of Thin Films. Mecha-nic and Dielectric Properties, vol. 17, Academic Press, Boston, pp. 1–77.

    Google Scholar 

  83. Ma, K.J. and Bloyce, A. (1995) Observations of deformation and failure mechanisms in TiN coatings after hardness indentation and scratch testing. Surf Eng. 11, 71–74.

    CAS  Google Scholar 

  84. Ma, K.J., Bloyce, A., and Bell, T. (1995) Examination of mechanical properties and failure mechanisms of TiN and Ti-TiN multilayer coatings, Surf Coat. Technol. 76–77, 297–302.

    Article  Google Scholar 

  85. Shiwa, M., Weppelmann, E., Munz, D., Swain, M.V., and Kishi, T. (1996) Acoustic emission and precision force-displacement observations of pointed and spherical indentation of silicon, J. Mater. Sci. 31, 5985–5991.

    Article  CAS  Google Scholar 

  86. Ma, K.J., Bloyce, A., Andrievski, R.A., and Kalinnikov, G.V. (in press) Microstructural response of mono- and multilayer hard coatings during indentation microhardness testing, Surf. Coat. Technol.

    Google Scholar 

  87. Andrievski, R.A., Bloyce, A., Kalinnikov, G.V., and Ma, K.J. (in press) Observations of deformation features in nanostructured T-B-N films after indentation testing, J. Mater. Sci. Lett.

    Google Scholar 

  88. Zielinski, P.G. and Ast, D.G. (1983) Slip bands in metallic glasses, Phil. Mag. A 48, 811–824.

    CAS  Google Scholar 

  89. Donovan, P.E. (1989) Plastic flow and fracture of Pd40Ni40P20 metallic glass un-der an indentor, J. Mater. Sci. 24, 523–535.

    Article  CAS  Google Scholar 

  90. Glezer, A.M. and Molotilov, B.V. (1992) Structure and Mechanical Properties of Amorphous Alloys, Metallurgiya, Moscow (in Russian).

    Google Scholar 

  91. Bobrov, O.P. and Khonik, V.A. (1995) Inhomogeneous flow via dislocations in metallic glasses: a survey of experimental evidence, J. Non-Cryst. Sol. 192/193, 603–607.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Andrievski, R.A. (1998). The-State-of-the-Art of Nanostructured High Melting Point Compound-Based Materials. In: Chow, GM., Noskova, N.I. (eds) Nanostructured Materials. NATO ASI Series, vol 50. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5002-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5002-6_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6100-1

  • Online ISBN: 978-94-011-5002-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics