Skip to main content

Lipid Deposition and Oxidation in the Evolution of the Atherosclerotic Lesion: Lessons Learned from Hypercholesterolemic Animal Models

  • Chapter
Multiple Risk Factors in Cardiovascular Disease

Part of the book series: Medical Science Symposia Series ((MSSS,volume 12))

  • 268 Accesses

Abstract

A focus of this symposium is the potential of multifactorial approaches to managing simultaneous risk factors for prevention of atherosclerosis. In keeping with this theme, this chapter discusses how hyperlipidemia-induced increases in the deposition of lipid within the artery wall, coupled with oxidative processes occurring within the artery may play important causative roles in the pathogenesis of atherosclerosis. The data suggest that combined hypolipidemic and antioxidant therapy may be most effective in the prevention of atherosclerosis in many high risk individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sanderson KJ, van Rij AM, Wade CR, Sutherland WH. Lipid peroxidation of circulating low density lipoproteins with age, smoking and in peripheral vascular disease. Atherosclerosis 1995; 118: 45–51.

    Article  PubMed  CAS  Google Scholar 

  2. Belch JJ, Mackay IR, Hill A, Jennings P, McCollum P. Oxidative stress is present in atherosclerotic peripheral arterial disease and further increased by diabetes mellitus. hit Angiol 1995; 14: 385–88.

    CAS  Google Scholar 

  3. Joensuu T, Salonen R, Winblad, I, Korpela H, Salonen JT. Determinants of femoral and carotid artery atherosclerosis. J Intern Med 1994; 236: 79–84.

    Article  PubMed  CAS  Google Scholar 

  4. Plachta H, Bartnikowska E, Obara A. Lipid peroxides in blood from patients with atherosclerosis of coronary and peripheral arteries. Clin Chim Acta 1992; 211: 101–12.

    Article  PubMed  CAS  Google Scholar 

  5. Vel’azquez E, Winocour PH, Kesteven P, Alberti KG, Laker MF. Relation of lipid peroxides to macrovascular disease in type 2 diabetes. Diabet Med 1991; 8: 752–58.

    Article  Google Scholar 

  6. Stringer MD, Kakkar VV. Markers of disease severity in peripheral atherosclerosis. Eur J Vasc Surg 1990; 4: 513–18.

    Article  PubMed  CAS  Google Scholar 

  7. Maggi E, Chiesa R, Melissano G, et al. LDL oxidation in patients with severe carotid atherosclerosis. A study of in vitro and in vivo oxidation markers. Arterioscler Thromb 1994; 14: 1892–99.

    Article  PubMed  CAS  Google Scholar 

  8. Kanazawa T, Osanai T, Yin XZ, Yi HZ, Onodera K, Metoki H. Peroxidized low-density lipoprotein with four kinds of hydroperoxidized cholesteryl linoleate estimated in plasma of young heavy smokers. Pathobiology 1996; 64: 115–22.

    Article  PubMed  CAS  Google Scholar 

  9. Schreier LE, Sanguinetti S, Mosso H, Lopez GI, Sin L, Wikinski RL. Low-density lipoprotein composition and oxidability in atherosclerotic cardiovascular disease. Clin Biochem 1996; 29: 479–87.

    Article  PubMed  CAS  Google Scholar 

  10. De Rijke YB, Verwey HF, Vogelezang CJ, et al. Enhanced susceptibility of low-density lipoproteins to oxidation in coronary bypass patients with progression of atherosclerosis. Clin Chim Acta 1995; 243: 137–49.

    Article  PubMed  Google Scholar 

  11. Andrews B, Burnand K, Paganga G, et al. Oxidisability of low density lipoproteins in patients with carotid or femoral artery atherosclerosis. Atherosclerosis 1995; 112: 77–84.

    Article  PubMed  CAS  Google Scholar 

  12. Marchesi E, Martignoni A, Salvini M, et al. Carotid intima-media thickening and in vivo LDL oxidation in patients with essential hypertension. J Hum Hypertens 1996; 10: 577–82.

    PubMed  CAS  Google Scholar 

  13. Palinski W, Tangirala RK, Miller E, Young SG, Witztum JL. Increased autoantibody titers against epitopes of oxidized LDL in LDL receptor-deficient mice with increased atherosclerosis. Arterioscler Thromb Vasc Biol 1995; 15: 1569–76.

    Article  PubMed  CAS  Google Scholar 

  14. Maggi E, Marchesi E, Ravetta V, Martignoni A, Finardi G, Bellomo G. Presence of autoantibodies against oxidatively modified low-density lipoprotein in essential hypertension: A biochemical signature of an enhanced in vivo low-density lipoprotein oxidation. J Hypertens 1995; 13: 129–38.

    Article  PubMed  CAS  Google Scholar 

  15. Uusitupa MI, Niskanen L, Luoma J, et al. Autoantibodies against oxidized LDL do not predict atherosclerotic vascular disease in non-insulin-dependent diabetes mellitus. Arterioscler Thromb Vasc Biol 1996; 16: 1236–42.

    Article  PubMed  CAS  Google Scholar 

  16. Walldius G, Regnstrom J, Nilsson J, et al. The role of lipids and antioxidative factors for development of atherosclerosis. The Probucol Quantitative Regression Swedish Trial (PQRST). Am J Cardiol 1993;71:15B–19B.

    Article  Google Scholar 

  17. Walldius G, Erikson U, Olsson AG, et-al. The effect of probucol on femoral atherosclerosis: The Probucol Quantitative Regression Swedish Trial (PQRST). Am J Cardiol 1994; 74: 875–83.

    Article  PubMed  CAS  Google Scholar 

  18. Kritchevsky SB, Shimakawa T, Tell GS, et al. Dietary antioxidants and carotid artery wall thickness. The ARIC Study. Atherosclerosis Risk in Communities Study. Circulation 1995; 92: 2142–50.

    Article  PubMed  CAS  Google Scholar 

  19. Azen SP, Qian D, Mack WJ, et al. Effect of supplementary antioxidant vitamin intake on carotid arterial wall intima-media thickness in a controlled clinical trial of cholesterol lowering. Circulation 1996; 94: 2369–72.

    Article  PubMed  CAS  Google Scholar 

  20. Steinberg D. Clinical trials of antioxidants in atherosclerosis: Are we doing the right thing? Lancet 1995; 346: 36–38.

    Article  PubMed  CAS  Google Scholar 

  21. Rosenfeld M, Palinski W, Ylä-Herttuala S, Butler S, Witztum JL. Distribution of oxidation specific lipid-protein adducts and apolipoprotein B in atherosclerotic lesions of varying severity from WHHL rabbits. Arteriosclerosis 1990; 10: 336–49.

    Article  PubMed  CAS  Google Scholar 

  22. Sasahara M, Raines EW, Chait A, et al. Inhibition of hypercholesterolemia-induced atherosclerosis in the nonhuman primate by probucol. I. Is the extent of atherosclerosis related to resistance of LDL to oxidation? J Clin Invest 1994; 94: 155–64.

    Article  PubMed  CAS  Google Scholar 

  23. Palinski W, Ord VA, Plump AS, Breslow JL, Steinberg D, Witztum JL. ApoE-deficient mice are a model of lipoprotein oxidation in atherogenesis. Demonstration of oxidation-specific epitopes in lesions and high titers of autoantibodies to malondialdehyde-lysine in serum. Arterioscler Thromb 1994; 14: 605–16.

    Article  PubMed  CAS  Google Scholar 

  24. Carew TE, Schwenke DC, Steinberg D. Antiatherogenic effect of probucol unrelated to its hypocholesterolemic effect: evidence that antioxidants in vivo can selectively inhibit low density lipoprotein degradation in macrophage-rich fatty streaks and slow the progression of atherosclerosis in the Watanabe heritable hyperlipidemic rabbit. Proc Natl Acad Sci USA 1987; 84: 772–79.

    Article  Google Scholar 

  25. Daugherty A, Zweifel BS, Schonfeld G. The effects of probucol on the progression of atherosclerosis in mature Watanabe heritable hyperlipidaemic rabbits. Br J Pharmacol 1991; 103: 1013–18.

    Article  PubMed  CAS  Google Scholar 

  26. Bjorkhem I, Henriksson-Freyschuss A, Breuer O, Diczfalusy U, Berglund L, Henriksson P. The antioxidant butylated hydroxytoluene protects against atherosclerosis. Arterioscler Thromb 1991; 11: 15–22.

    Article  PubMed  CAS  Google Scholar 

  27. Bocan TM, Mueller SB, Brown EQ, Uhlendorf PD, Mazur MJ, Newton RS. Antiatherosclerotic effects of antioxidants are lesion-specific when evaluated in hypercholesterolemic New Zealand white rabbits. Exp Mol Pathol 1992; 57: 70–83.

    Article  PubMed  CAS  Google Scholar 

  28. Sparrow CP, Doebber TW, Olszewski J, et al. Low density lipoprotein is protected from oxidation and the progression of atherosclerosis is slowed in cholesterol-fed rabbits by the antioxidant N,N’-diphenyl-phenylenediamine. J Clin Invest 1992; 89: 1885–91.

    Article  PubMed  CAS  Google Scholar 

  29. Morel DW, de la Llera-Moya M, Friday KE. Treatment of cholesterol-fed rabbits with dietary vitamins E and C inhibits lipoprotein oxidation but not development of atherosclerosis. J Nutr 1994; 124: 2123–30.

    CAS  Google Scholar 

  30. Fruebis J, Steinberg D, Dresel HA, Carew TE. A comparison of the antiatherogenic effects of probucol and of a structural analogue of probucol in low density lipoprotein receptor-deficient rabbits. J Clin Invest 1994; 94: 392–98.

    Article  PubMed  CAS  Google Scholar 

  31. Kleinveld HA, Demacker PN, Stalenhoef AF. Comparative study on the effect of low-dose vitamin E and probucol on the susceptibility of LDL to oxidation and the progression of atherosclerosis in Watanabe heritable hyperlipidemic rabbits. Arterioscler Thromb 1994; 14: 1386–91.

    Article  PubMed  CAS  Google Scholar 

  32. Shaish A, Daugherty A, O’Sullivan F, Schonfeld G, Heinecke JW. Beta-carotene inhibits atherosclerosis in hypercholesterolemic rabbits. J Clin Invest 1995; 96: 2075–82.

    Article  PubMed  CAS  Google Scholar 

  33. Fruebis J, Carew TE, Palinski W. Effect of vitamin E on atherogenesis in LDL receptor-deficient rabbits. Atherosclerosis 1995; 117: 217–24.

    Article  PubMed  CAS  Google Scholar 

  34. Chang MY, Sasahara M, Chait A, Raines EW, Ross R. Inhibition of hypercholesterolemia- induced atherosclerosis in the nonhuman primate by probucol. H. Cellular composition and proliferation. Arterioscler Thromb Vasc Biol 1995; 15: 1631–40.

    Article  PubMed  CAS  Google Scholar 

  35. Tangirala RK, Casanada, F, Miller E, Witztum JL, Steinberg D, Palinski W. Effect of the antioxidant N,N’-diphenyl 1,4-phenylenediamine (DPPD) on atherosclerosis in apoE-deficient mice. Arterioscler Thromb Vasc Biol 1995; 15: 1625–30.

    Article  PubMed  CAS  Google Scholar 

  36. Schwenke DC, Carew TE. Initiation of atherosclerotic lesions in cholesterol-fed rabbits: I. Focal increases in arterial LDL concentration precede development of fatty streak lesions. Arteriosclerosis 1989; 9: 895–907.

    Article  PubMed  CAS  Google Scholar 

  37. Schwenke DC, Carew TE. Initiation of atherosclerotic lesion in cholesterol-fed rabbits. II. Selective retention of LDL vs. selective increases in LDL permeability in susceptible sites of arteries. Arteriosclerosis 1989; 9: 908–18.

    Article  PubMed  CAS  Google Scholar 

  38. Rosenfeld ME, Carew, TE, von Hodenberg E, Pittman RC, Ross R, Steinberg D. Autoradiographic analysis of the distribution of 125I-tyramine-cellobiose-LDL in atherosclerotic lesions of the WHHL rabbit. Arteriosclerosis and Thrombosis 1992; 12: 98595.

    Article  Google Scholar 

  39. Frank JS, Fogelman AM. Ultrastructure of the intima in WHHL and cholesterol-fed rabbit aortas prepared by ultra-rapid freezing and freeze-etching. J Lipid Res 1989; 30: 967–78.

    PubMed  CAS  Google Scholar 

  40. Stocker R. Lipoprotein oxidation: Mechanistic aspects, methodological approaches and clinical relevance. Curr Opin Lipidol 1994; 5: 422–33.

    Article  PubMed  CAS  Google Scholar 

  41. Tribble DL. Lipoprotein oxidation in dyslipidemia: Insights into general mechanisms affecting lipoprotein oxidative behavior. Curr Opin Lipidol 1995; 6: 196–208.

    Article  PubMed  CAS  Google Scholar 

  42. Rice-Evans C, Leake D, Bruckdorfer KR, Diplock AT. Practical approaches to low density lipoprotein oxidation: Whys, wherefores and pitfalls. Free Radic Res 1996; 25: 285–311.

    Article  PubMed  CAS  Google Scholar 

  43. Jialal I, Devaraj S. Low-density lipoprotein oxidation, antioxidants, and atherosclerosis: A clinical biochemistry perspective. Clin Chem 1996; 42: 498–506.

    PubMed  CAS  Google Scholar 

  44. Esterbauer H, Schmidt R, Hayn M. Relationships among oxidation of low-density lipoprotein, antioxidant protection, and atherosclerosis. Adv Pharmacol 1997; 38: 425–56.

    Article  PubMed  CAS  Google Scholar 

  45. Haberland ME, Fong D, Cheng L. Malondialdehyde-altered protein occurs in atheroma of Watanabe heritable hyperlipidemic rabbits. Science 1988; 241: 215–18.

    Article  PubMed  CAS  Google Scholar 

  46. Palinski W, Rosenfeld ME, Yla-Herttuala S, et al. Low density lipoprotein undergoes oxidative modification in vivo. Proc Natl Acad Sci USA 1989; 86: 1372–76.

    Article  PubMed  CAS  Google Scholar 

  47. Boyd HC, Gown AM, Wolfbauer G, Chait-A. Direct evidence for a protein recognized by a monoclonal antibody against oxidatively modified LDL in atherosclerotic lesions from a Watanabe heritable hyperlipidemic rabbit. Am J Pathol 1989; 135: 815–25.

    PubMed  CAS  Google Scholar 

  48. Khan BV, Parthasarathy SS, Alexander RW, Medford RM. Modified low density lipoprotein and its constituents augment cytokine-activated vascular cell adhesion molecule-1 gene expression in human vascular endothelial cells. J Clin Invest 1995; 95: 1262–70.

    Article  PubMed  CAS  Google Scholar 

  49. Kim JA, Territo MC, Wayner E, et al. Partial characterization of leukocyte binding molecules on endothelial cells induced by minimally oxidized LDL. Arterioscler Thromb 1994; 14: 42733.

    Google Scholar 

  50. Cushing SD, Berliner JA, Valente AJ, et al. Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proc Natl Acad Sci USA 1990; 87: 5134–38.

    Article  PubMed  CAS  Google Scholar 

  51. Quinn MT, Parthasarathy S, Fong L, Steinberg D. Oxidatively modified low density lipoproteins: A potential role in the recruitment and retention of monocyte/macrophages during atherogenesis. Proc Natl Acad Sci USA 1987; 84: 2995–98.

    Article  PubMed  CAS  Google Scholar 

  52. McMurray HF, Parthasarathy S, Steinberg D. Oxidatively modified low density lipoprotein is a chemoattractant for human T lymphocytes. J Clin Invest 1993; 92: 1004–8.

    Article  PubMed  CAS  Google Scholar 

  53. Yla-Herttuala S. Expression of lipoprotein receptors and related molecules in atherosclerotic lesions. Curr Opin Lipidol 1996; 7: 292–97.

    Article  PubMed  CAS  Google Scholar 

  54. Start’ HC, Chandler AB, Glagov S, et al. A defmition of initial, fatty streak, and intermediate lesions of atherosclerosis. Circulation 1994; 89: 2462–78.

    Article  Google Scholar 

  55. O’Brien K, Nagano Y, Gown A, Kita T, Chait A. Probucol treatment affects the cellular composition but not anti-oxidized low density lipoprotein immunoreactivity of plaques from Watanabe heritable hyperlipidemic rabbits. Arterioscler Thromb 1991; 11: 751–59.

    Article  Google Scholar 

  56. Braesen JH, Beisiegel U, Niendorf A. Probucol inhibits not only the progression of atherosclerotic disease, but causes a different composition of atherosclerotic lesions in WHHL-rabbits. Virchows Arch 1995; 426: 179–88.

    Article  PubMed  CAS  Google Scholar 

  57. Stary HC, Chandler AB, Glagov S, et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. Arterioscler Thromb Vasc Biol 1995; 15: 1512–31.

    Article  PubMed  CAS  Google Scholar 

  58. Guyton JR, Klemp KF. Development of the lipid-rich core in human atherosclerosis. Arterioscler Thromb Vascm Biol 1996; 16: 4–11.

    Article  CAS  Google Scholar 

  59. Coffey MD, Cole RA, Colles SM, Chisohm GM. In vitro cell injury by oxidized low density lipoprotein involves lipid hydroperoxide-induced formation of alkoxyl, lipid, and peroxyl radicals. J Clin Invest 1995; 96: 1866–73.

    Article  PubMed  CAS  Google Scholar 

  60. Yui S, Sasaki T, Miyazaki A, Horiuchi S, Yamazaki M. Induction of murine macrophage growth by modified LDLs. Arterioscler Thromb 1993; 13: 331–37.

    Article  PubMed  CAS  Google Scholar 

  61. Sakai M, Miyazaki A, Hakamata H, et al. Lysophosphatidylcholine potentiates the mitogenic activity of modified LDL for human monocyte-derived macrophages. Arterioscler Thromb Vasc Biol 1996; 16: 600–605.

    Article  PubMed  CAS  Google Scholar 

  62. Kusuhara M, Chait A, Cader A, Berk BC. Oxidized LDL stimulates mitogen-activated protein kinases in smooth muscle cells and macrophages. Arterioscler Thromb Vasc Biol 1997; 17: 141–48.

    Article  PubMed  CAS  Google Scholar 

  63. Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N Eng J Med 1987; 316: 1371–74.

    Article  CAS  Google Scholar 

  64. Clarkson TB, Prichard RW, Morgan TM, Petrick GS, Klein KP. Remodeling of coronary arteries in human and nonhuman primates. JAMA 1994; 271: 289–94.

    Article  PubMed  CAS  Google Scholar 

  65. Lendon CL, Davies MJ, Born GV, Richardson PD. Atherosclerotic plaque caps are locally weakened when macrophages density is increased. Atherosclerosis 1991; 87: 87–90.

    Article  PubMed  CAS  Google Scholar 

  66. Mitchinson, MJ, Hardwick SJ, Bennett MR. Cell death in atherosclerotic plaques. Curr Opin Lipidol 1996; 7: 324–29.

    Article  PubMed  CAS  Google Scholar 

  67. Libby P, Geng YJ, Aikawa M, et al. Macrophages and atherosclerotic plaque stability. Curr Opin Lipidol 1996; 7: 330–35.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rosenfeld, M.E. (1998). Lipid Deposition and Oxidation in the Evolution of the Atherosclerotic Lesion: Lessons Learned from Hypercholesterolemic Animal Models. In: Gotto, A.M., Lenfant, C., Paoletti, R., Catapano, A.L., Jackson, A.S. (eds) Multiple Risk Factors in Cardiovascular Disease. Medical Science Symposia Series, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5022-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5022-4_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6108-7

  • Online ISBN: 978-94-011-5022-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics