Skip to main content

Giant In-Plane Optical Anisotropy of Semiconductor Heterostructures with No-Common-Atom

  • Chapter
Nanoscale Science and Technology

Part of the book series: NATO ASI Series ((NSSE,volume 348))

  • 269 Accesses

Abstract

The envelope function theory (EFT) originally proposed by G. Bastard [1] for the calculation of quantum well electronic properties has become very popular because, in spite of its remarkable simplicity, no quantitative or qualitative breakdown of its predictions has been reported until very recently. The EFT has been widely used not only to evaluate bare ≪ first order ≫ electronic properties, which was its original motivation, but also to predict many refined effects, such as QW polaritons [2], second order optical nonlinearities [3] or spin-relaxation phenomena [4,5]. The classical EFT is based on a somewhat simplified version of the 8x8 k.p hamiltonian describing the electronic properties of bulk III-V or II-VI semiconductors having the zinc-blend structure [6], to which scalar potentials describing the shifts of the band extrema at interfaces, and an eventual external potential are added [1]. Here, we consider exclusively the situation of heterostructures grown along the (001) axis. A characteristic feature of the EFT is that the projection Jz of the angular momentum on the quantification axis z is a good quantum number at the zone center, i.e. when the in-plane wavevector kt= 0. In other words, the heavy hole states | 3/2 ± 3/2〉 do not couple to the Jz = ±1/2 light particle states at kt= 0. This remains true even if the quantum well potential is asymmetric, as for instance when an axial electric field is present. Biaxial strain due to a possible lattice mismatch does not change this result [7], which contrasts with the classical group theoretical result stating that (neglecting effects associated with the integer or half-integer character of the layer thicknesses [8]) the point groups of symmetric and asymmetric quantum wells are respectively D2d and C2v [9–11].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Bastard, Phys. Rev. B24, 5693 (1981)

    ADS  Google Scholar 

  2. G. Bastard, Phys. Rev. B25, 7584 (1982).

    ADS  Google Scholar 

  3. See also the textbook « wave mechanics applied to semiconductor heterostructures » (les Editions de Physique, les Ulis, 1992)

    Google Scholar 

  4. See for instance L. Andreani, A. d’Andrea and R. del Sole, Phys. Lett. A168, 451 (1992)

    ADS  Google Scholar 

  5. J. Khurghin, Phys. Rev. B38, 4056 (1988)

    ADS  Google Scholar 

  6. T. Uenoyama and L.J. Sham, Phys. Rev. Lett. 64, 3070 (1990)

    Article  ADS  Google Scholar 

  7. R. Ferreira and G. Bastard, Phys. Rev. B43, 9687 (1991)

    ADS  Google Scholar 

  8. See G.E. Pikus and A.N. Titkov, « Spin relaxation under optical orientation in semiconductors », in « Optical Orientation », edited by F. Meier and B.P. Zakharchenya (Elsevier, 1984)

    Google Scholar 

  9. See for instance J.Y. Marzin, J.M. Gérard, P. Voisin and J.A. Brum, «Optical studies of strained III-V heterolayers » in Semiconductors and Semimetals vol. 32 (Academic Press, 1990)

    Google Scholar 

  10. Yu. E. Kitaev, A.G. Panfilov, P. Tronc and R.A. Evarestov, J. of Physics Condensed Matter 9, 257 (1997)

    Article  ADS  Google Scholar 

  11. D.L. Smith and C. Mailhiot, Rev. Mod. Phys. 62, 173 (1990)

    Article  ADS  Google Scholar 

  12. P.V. Santos, P. Etchegoin, M. Cardonna, B. Brar and H. Kroemer, Phys. Rev. B50, 8746 (1994)

    ADS  Google Scholar 

  13. D. Vakhshoori, Appl. Phys. Lett. 65, 259(1994)

    Google Scholar 

  14. B-F. Zhu and Y.C. Chang, Phys. Rev. B 50, 11932 (1994)

    ADS  Google Scholar 

  15. C. Gourdon and Ph. Lavallard, Phys. Rev. B46, 4644 (1992)

    ADS  Google Scholar 

  16. S.H. Kvok, H.T. Grahn, K. Ploog and R. Merlin, Phys. Rev. Lett. 69, 973 (1992)

    Article  ADS  Google Scholar 

  17. D. Vakhshoori and R.E. Leibenguth, Appl. Phys. Lett. 67, 1045 (1995)

    Article  ADS  Google Scholar 

  18. W. Seidel, P. Voisin, J.P. André and F. Bogani, Solid State Electronics 40, 729 (1996)

    Article  ADS  Google Scholar 

  19. O. Krebs, W. Seidel, J.P. André, D. Bertho, C. Jouanin and P. Voisin, to appear in Semicond. Sci. Technol. Lett. (1997)

    Google Scholar 

  20. E. L. Ivchenko, A. Yu. Kaminski and U. Rössler, Phys. Rev. B54, 5852 (1996)

    ADS  Google Scholar 

  21. O. Krebs and P. Voisin, Phys. Rev. Lett.77, 1829 (1996)

    Article  ADS  Google Scholar 

  22. W. Seidel, O. Krebs, P. Voisin, J.C. Harmand, F. Aristone and J.F. Palmier, Phys. Rev. B55, 2274 (1997)

    ADS  Google Scholar 

  23. Y. Foulon and C. Priester, Phys. Rev. B45, 6259 (1992)

    ADS  Google Scholar 

  24. E.L. Ivchenko and A. Toropov, preprint

    Google Scholar 

  25. More precisely, we define | j> = 1/2| ±(X+Y)+Z>, 1/2| ±(X-Y)-Z> and Pj =| j> <j|

    Google Scholar 

  26. This is obviously an over-simplification, in fact only an image, since dipole corrections and local strain effects are not taken into account. The central idea is to affect to each half-monolayer the average valence band potential.

    Google Scholar 

  27. S. Chelles, R. Ferreira and P. Voisin, Semicond. Sci. Technol. 10, 105 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Krebs, O., Voisin, P., Voos, M. (1998). Giant In-Plane Optical Anisotropy of Semiconductor Heterostructures with No-Common-Atom. In: García, N., Nieto-Vesperinas, M., Rohrer, H. (eds) Nanoscale Science and Technology. NATO ASI Series, vol 348. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5024-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5024-8_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6109-4

  • Online ISBN: 978-94-011-5024-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics