Skip to main content

Inferences on genome-wide deleterious mutation rates in inbred populations of Drosophila and mice

  • Chapter
Mutation and Evolution

Part of the book series: Contemporary Issues in Genetics and Evolution ((CIGE,volume 7))

Abstract

A theoretical analysis was carried out on the mutation load observed in long-maintained inbred lines from two experiments with Drosophila and mice. The rate of decline in fitness and its sampling distribution were predicted for both experiments using Monte Carlo simulation with a range of mutational parameters and models. The predicted rates of change in fitness were compared to the empirical observed rates, which were close to zero. The classical hypothesis of many deleterious mutations (about one event per genome per generation) of small effect (1–2%) resulting in a mutation pressure for fitness of about 1% per generation is incompatible with the data. Recent estimates suggesting an overall mutation pressure for fitness traits of about 0.1% are, however, compatible with the observed load.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barton, N.H. & M. Turelli, 1989. Evolutionary Quantitative Genetics: How little do we know?. Ann. Rev. Genet. 23: 337–370.

    Article  PubMed  CAS  Google Scholar 

  • Caballero, A. & P.D. Keightley, 1994. A pleiotropic nonadditive model of variation in quantitative traits. Genetics 138: 883–900.

    PubMed  CAS  Google Scholar 

  • Caballero, A., P.D. Keightley & W.G. Hill, 1991. Strategies for increasing fixation probabilities of recessive mutations. Genet. Res. 58: 129–138.

    Article  Google Scholar 

  • Caballero, A., P.D. Keightley & W.G. Hill, 1995. Accumulation of mutations affecting body weight in inbred mouse lines. Genet. Res. 65: 145–149.

    Article  PubMed  CAS  Google Scholar 

  • Caballero, A. & E. Santiago, 1995. Response to selection from new mutation and effective size of partially inbred populations. I. Theoretical Results. Genet. Res. 66: 213–225.

    Article  Google Scholar 

  • Charlesworth, B., 1990. Mutation-selection balance and the evolutionary advantage of sex and recombination. Genet. Res. 55: 199–221.

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth, B., M.T. Morgan & D. Charlesworth, 1993. Mutation accumulation in finite outbreeding and inbreeding populations. Genet. Res. 61: 39–56.

    Article  Google Scholar 

  • Charlesworth, B., D. Charlesworth & M.T. Morgan, 1990. Genet ic loads and estimates of mutation rates in highly inbred plant populations. Nature 347: 380–382.

    Article  Google Scholar 

  • Charlesworth, D., E.E. Lyons & L.B. Litchfield, 1994. Inbreeding depression in two highly inbreeding populations of Leavenworthia. Proc. R. Soc. Lond. B 258: 209–214.

    Article  Google Scholar 

  • Charlesworth, B. & K.A. Hughes, 1998. The maintenance of genetic variation in life history traits. In Evolutionary Genetics From Molecules to Morphology, edited by R.S. Singh & C.B. Krimbas. Cambridge University Press. (In press).

    Google Scholar 

  • Crow, J.F., 1993. Mutation, mean fitness and genetic load. Oxford Surv. Evol. Biol. 9: 3–42.

    Google Scholar 

  • Crow, J.F. & M. Kimura, 1970. An Introduction to Population Genetics Theory. Harper & Row, N.Y, USA.

    Google Scholar 

  • Deng, H.-W. & M. Lynch, 1996. Estimation of deleterious-mutation parameters in natural populations. Genetics 144: 349–360.

    PubMed  CAS  Google Scholar 

  • Fernández, J. & C. López-Fanjul, 1996. Spontaneous mutational variances and covariances for fitness-related traits in Drosophila melanogaster. Genetics 143: 829–837.

    PubMed  Google Scholar 

  • Fernández, J. & C. López-Fanjul, 1997. Spontaneous mutational genotype-environmental interaction for fitness-related traits in Drosophila melanogaster. Evolution 51: 856–864.

    Article  Google Scholar 

  • García, N., C. López-Fanjul & A. García-Dorado, 1994. The genetics of viability in Drosophila melanogaster. effects of inbreeding and artificial selection. Evolution 48: 1277–1285.

    Article  Google Scholar 

  • García-Dorado, A., 1997. The rate and effects distribution of viability mutation in Drosophila: minimum distance estimation. evolution 51: 1130–1139.

    Article  Google Scholar 

  • Johnston, M.O. & D.J. Schoen, 1995. Mutation rates and dominance levels of genes affecting total fitness in two angiosperm species. Science 267: 226–229.

    Article  PubMed  CAS  Google Scholar 

  • Keightley, P.D., 1994. The distribution of mutation effects on viability in Drosophila melanogaster. Genetics 138: 1315–1322.

    PubMed  CAS  Google Scholar 

  • Keightley, P.D., 1996. Nature of deleterious mutation load in Drosophila. Genetics 144: 1993–1999.

    PubMed  CAS  Google Scholar 

  • Keightley, P.D. & A. Caballero, 1997. Genomic mutation rates for lifetime reproductive output and life span in Caenorhabditis elegans. Proc. Natl. Acad. Sci. U.S.A. 94: 3823–3827.

    Article  PubMed  CAS  Google Scholar 

  • Keightley, P.D. & W.G. Hill, 1992. Quantitative genetic variation in body size of mice from new mutation. Genetics 131: 693–700.

    PubMed  CAS  Google Scholar 

  • Kibota, T.T. & M. Lynch, 1996. Estimate of the genomic mutation rate deleterious to overall fitness in E. coli. Nature 381: 694–696.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, M., 1962. On the probability of fixation of mutant genes in a population. Genetics 47: 713–719.

    PubMed  CAS  Google Scholar 

  • Kondrashov, A.S., 1988. Deleterious mutations and the evolution of sexual reproduction. Nature 336: 435–440.

    Article  PubMed  CAS  Google Scholar 

  • Kondrashov, A.S., 1995. Contamination of the genome by very slightly deleterious mutations: why have we not died 100 times over?. J. Theor. Biol. 175: 583–594.

    Article  PubMed  CAS  Google Scholar 

  • Kondrashov, A.S. & D. Houle, 1994. Genotype-environment interac tions and the estimation of the genomic mutation rate in Drosophila melanogaster. Proc. R. Soc. Lond. B 258: 221–227.

    Article  CAS  Google Scholar 

  • Lande, R., 1994. Risk of population extinction from fixation of new deleterious mutations. Evolution 48: 1460–1469.

    Article  Google Scholar 

  • Lande, R., 1995. Mutation and conservation. Conservation Biology 9: 782–791.

    Article  Google Scholar 

  • López-Fanjul, C. & A. Villaverde, 1989. Inbreeding increases genet ic variance for viability in Drosophila melanogaster. Evolution 43: 1800–1804.

    Article  Google Scholar 

  • Lynch, M., J. Conery & R. Burger, 1995. Mutation accumulation and extinction of small populations. Am. Nat. 146: 489–518.

    Article  Google Scholar 

  • Mackay, T.F.C., 1985. A quantitative genetic analysis of fitness and its componenets in Drosophila melanogaster. Genet. Res. 47: 59–70.

    Article  Google Scholar 

  • Merchante, M., A. Caballero & C. López-Fanjul, 1995. Response to selection from new mutation and effective size of partially inbred populations. II. Experiments with Drosophila melanogaster. Genet. Res. 66: 227–240.

    Article  PubMed  CAS  Google Scholar 

  • Mukai, T., 1964. The genetic structure of natural populations of Drosophila melanogaster. I. Spontaneous mutation rate of polygenes controlling viability. Genetics 50: 1–19.

    PubMed  CAS  Google Scholar 

  • Mukai, T., 1969. The genetic structure of natural populations of Drosophila melanogaster. VII. Synergistic interaction of sponta neous mutant polygenes controlling viability. Genetics 61: 749–761.

    PubMed  CAS  Google Scholar 

  • Mukai, T., S.I. Chigusa, L.E. Mettler & J.F. Crow, 1972. Mutation rate and dominance of genes affecting viability in Drosophila melanogaster. Genetics 72: 333–355.

    Google Scholar 

  • Ohnishi, O., 1977. Spontaneous and ethyl methanesulfonate-induced mutations controlling viability in Drosophila melanogaster. II. Homozygous effect of polygenic mutations. Genetics 87: 529–545.

    PubMed  CAS  Google Scholar 

  • Peck, J.R. & A. Eyre-Walker, 1997. The muddle about mutations. Nature 387: 135–136.

    Article  PubMed  CAS  Google Scholar 

  • Sved, J.A., 1975. Fitness of third chromosome homozygotes in Drosophila melanogaster. Genet. Res. 25: 197–200.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Caballero, A., Keightley, P.D. (1998). Inferences on genome-wide deleterious mutation rates in inbred populations of Drosophila and mice. In: Woodruff, R.C., Thompson, J.N. (eds) Mutation and Evolution. Contemporary Issues in Genetics and Evolution, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5210-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5210-5_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6193-3

  • Online ISBN: 978-94-011-5210-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics