Skip to main content

Mutation pressure, natural selection, and the evolution of base composition in Drosophila

  • Chapter
Mutation and Evolution

Part of the book series: Contemporary Issues in Genetics and Evolution ((CIGE,volume 7))

Abstract

Genome sequencing in a number of taxa has revealed variation in nucleotide composition both among regions of the genome and among functional classes of sites in DNA. Mutational biases, biased gene conversion, and natural selection have been proposed as causes of this variation. Here, we review patterns of base composition in Drosophila DNA. Nucleotide composition in Drosophila melanogaster varys regionally, and base composition is correlated between introns and exons. Drosophila species also show striking patterns of non-random codon usage. Patterns of synonymous codon usage and the biochemistry of translation suggest that natural selection may act at ‘ silent’ sites. A relationship between recombination rates and codon usage and comparisons of the evolutionary dynamics of silent mutations within and between species support natural selection discriminating among synonymous codons. The causes of regional base composition variation are less clear. Progress in functional studies of non-coding DNA, further investigations of genome patterns, and statistical tests based on evolutionary theory will lead to a greater understanding of the contributions of mutational processes and natural selection in patterning genome-wide nucleotide composition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akashi, H., 1994. Synonymous codon usage in Drosophila melanogaster: Natural selection and translational accuracy. Genetics 136: 927–935.

    PubMed  CAS  Google Scholar 

  • Akashi, H., 1995. Inferring weak selection from patterns of poly morphism and divergence at’ silent’ sites in Drosophila DNA. Genetics 139: 1067–1076.

    PubMed  CAS  Google Scholar 

  • Akashi, H., 1996. Molecular evolution between Drosophila melanogaster and D. simulans: reduced codon bias, faster rates of amino acid substitution, and larger proteins in D. melanogaster. Genetics 144: 1297–1307.

    PubMed  CAS  Google Scholar 

  • Akashi, H., in press. Codon bias evolution in Drosophila: Population genetics of mutation-selection-drift. Gene.

    Google Scholar 

  • Akashi, H. & S.W. Schaeffer, 1997. Natural selection and the fre quency distributions of’ silent’ DNA polymorphism in Drosophila. Genetics 146: 295–307.

    PubMed  CAS  Google Scholar 

  • Anderson, C.L., E.A. Carew & J.R. Powell, 1993. Evolution of the Adh locus in the Drosophila willistoni group: the loss of an intron, and shift in codon usage. Mol. Biol. Evol. 10: 605–618.

    PubMed  CAS  Google Scholar 

  • Andersson, G.E. & C.G. Kurland, 1990. Codon preferences in freeliving microorganisms. Microbiol. Rev. 54: 198–210.

    PubMed  CAS  Google Scholar 

  • Ashburner, M., 1989. Drosophila. A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Ballard, J.W. & M. Kreitman, 1994. Unraveling selection in the mitochondrial genome of Drosophila. Genetics 138: 757–772.

    PubMed  CAS  Google Scholar 

  • Barton, N.H., 1995. Linkage and the limits to natural selection. Genetics 140: 821–841.

    PubMed  CAS  Google Scholar 

  • Bennetzen, J.L. & B.D. Hall, 1982. Codon selection in yeast. J. Biol. Chem. 257: 3026–3031.

    PubMed  CAS  Google Scholar 

  • Berg, O.G. & M. Martelius, 1995. Synonymous substitution-rate constants in Escherichia coli and Salmonella typhimurium and their relationship to gene expression and selection pressure. J. Mol. Evol. 41: 449–456.

    Article  PubMed  CAS  Google Scholar 

  • Bernardi, G., 1989. The isochore organization of the human genome. Annu. Rev. Genet. 23: 637–661.

    Article  PubMed  CAS  Google Scholar 

  • Bernardi, G., 1995. The human genome: organization and evolutionary history. Annu. Rev. Genet. 29: 445–476.

    Article  PubMed  CAS  Google Scholar 

  • Bernardi, G. & G. Bernardi, 1986. Compositional constraints and genome evolution. J. Mol. Evol. 24: 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Brown, T.C. & J. Jiricny, 1988. Different base/base mispairs are corrected with different efficiencies and specificities in monkey kidney cells. Cell 54: 705–711.

    Article  PubMed  CAS  Google Scholar 

  • Bruhat, A., D. Dreau, M.E. Drake, S. Tourmente, S. Chapel, J.L. Couderc & B. Dastugue, 1993. Intronic and 5′ flanking sequences of the Drosophila beta 3 tubulin gene are essential to confer ecdysone responsiveness. Mol. Cell. Endocrinol. 94: 61–71.

    Article  PubMed  CAS  Google Scholar 

  • Bulmer, M., 1987. A statistical analysis of nucleotide sequences of introns and exons in human genes. Mol. Biol. Evol. 4: 395–405.

    PubMed  CAS  Google Scholar 

  • Bulmer, M., 1988. Are codon usage patterns in unicellular organisms determined by selection-mutation balance. J. Evol. Biol. 1: 15–26.

    Article  Google Scholar 

  • Bulmer, M., 1991. The selection-mutation-drift theory of synony mous codon usage. Genetics 129: 897–907.

    PubMed  CAS  Google Scholar 

  • Carulli, J.P., D.E. Krane, D.L. Hartl & H. Ochman, 1993. Compo sitional heterogeneity and patterns of molecular evolution in the Drosophila genome. Genetics 134: 837–845.

    PubMed  CAS  Google Scholar 

  • Charlesworth, B., 1996. Background selection and patterns of genet ic diversity in Drosophila melanogaster. Genet. Res. 68: 131–149.

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth, D., B. Charlesworth & M.T. Morgan, 1995. The pat tern of neutral molecular variation under the background selection model. Genetics 141: 1619–1632.

    PubMed  CAS  Google Scholar 

  • Clary, D.O. & D.R. Wolstenholme, 1985. The mitochondrial DNA molecular of Drosophila yakuba: nucleotide sequence, gene orga nization, and genetic code. J. Mol. Evol. 22: 252–271.

    Article  PubMed  CAS  Google Scholar 

  • Crick, F.H.C., 1968. The origin of the genetic code. J. Mol. Biol. 38: 367–379.

    Article  PubMed  CAS  Google Scholar 

  • Curran, J.F. & M. Yarus, 1989. Rates of aminoacyl-tRNA selection at 29 sense codons in vivo. J. Mol. Biol. 209: 65–77.

    Article  PubMed  CAS  Google Scholar 

  • DeBry, R.W. & W.F. Marzluff, 1994. Selection on silent sites in the rodent H3 histone gene family. Genetics 138: 191–202.

    PubMed  CAS  Google Scholar 

  • Deschavanne, P. & J. Filipski, 1995. Correlation of GC content with replication timing and repair mechanisms in weakly expressed E. coli genes. Nucleic Acids Res. 23: 1350–1353.

    Article  PubMed  CAS  Google Scholar 

  • Eyre-Walker, A., 1993. Recombination and mammalian genome evolution. Proc. R. Soc. Lond. B. Biol. Sci. 252: 237–243.

    Article  CAS  Google Scholar 

  • Eyre-Walker, A., 1996. The close proximity of Escherichia coli genes: consequences for stop codon and synonymous codon use. J. Mol. Evol. 42: 73–78.

    Article  PubMed  CAS  Google Scholar 

  • Eyre-Walker, A., 1997. Differentiating between selection and muta tion bias. [letter] Genetics 147: 1983–1987.

    PubMed  CAS  Google Scholar 

  • Eyre-Walker, A. & M. Bulmer, 1995. Synonymous substitution rates in enterobacteria. Genetics 140: 1407–1412.

    PubMed  CAS  Google Scholar 

  • Felsenstein, J., 1974. The evolutionary advantage of recombination. Genetics 78: 737–756.

    PubMed  CAS  Google Scholar 

  • Filipski, J., 1987. Correlation between molecular clock ticking, codon usage fidelity of DNA repair, chromosome banding and chromatin compactness in germline cells. FEBS Lett. 217: 184–186.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, R. A., 1930. The Genetical Theory of Natural Selection. Clarendon Press, Oxford, England.

    Google Scholar 

  • Freese, E., 1962. On the evolution of base composition of DNA. J. Theor. Biol. 3: 82–101.

    Article  CAS  Google Scholar 

  • Gouy, M. & C. Gautier, 1982. Codon usage in bacteria: correlation with gene expressivity. Nucleic Acids Res. 10: 7055–7074.

    Article  PubMed  CAS  Google Scholar 

  • Grosjean, H. & W. Fiers, 1982. Preferential codon usage in prokaryotic genes: the optimal codon-anticodon interaction energy and the selective codon usage in efficiently expressed genes. Gene 18: 199–209.

    Article  PubMed  CAS  Google Scholar 

  • Haerry, T.E. & W.J. Gehring, 1996. Intron of the mouse Hoxa-7 gene contains conserved homeodomain binding sites that can function as an enhancer element in Drosophila. Proc. Natl. Acad. Sci. USA 93: 13884–13889.

    Article  PubMed  CAS  Google Scholar 

  • Hickey, D.A., L. Bally-Cuif, S. Abukashawa, V. Payant & B.F. Benkel, 1991. Concerted evolution of duplicated protein-coding genes inDrosophila. Proc. Natl. Acad. Sci. USA 88: 1611–1615.

    Article  PubMed  CAS  Google Scholar 

  • Hickey, D.A., S. Wang & C. Magoulas, 1994. Gene duplication, gene conversion, and codonbias, pp. 199–207. In Non-Neutral Evolution: Theories and Molecular Data, edited by B. Golding. Chapman & Hall, New York.

    Chapter  Google Scholar 

  • Hill, W.G. & A. Robertson, 1966. The effect of linkage on limits to artificial selection. Genet. Res. 8: 269–294.

    Article  PubMed  CAS  Google Scholar 

  • Hilliker, A. F., S. H. Clark & A. Chovnick, 1988. Genetic analysis of intragenic recombination in Drosophila, pp. 73–90. In The Recombination of Genetic Material, edited by K.B. Low. Academic Press, San Diego.

    Google Scholar 

  • Holmquist, G.P., 1992. Chromosome bands, their chromatin flavors, and their functional features. Am. J. Hum. Genet. 51: 17–37.

    PubMed  CAS  Google Scholar 

  • Huang, J.D., D.H. Schwyter, J.M. Shirokawa & A.J. Courey, 1993. The interplay between multiple enhancer and silencer elements defines the pattern of decapentaplegic expression. Genes Dev. 7: 694–704.

    Article  PubMed  CAS  Google Scholar 

  • Hudson, R.R., K. Bailey, D. Skarecky, J. Kwiatowski & F.J. Ayala, 1994. Evidence for positive selection in the Superoxide dismutase (Sod) region of Drosophila melanogaster. Genetics 136: 1329–

    PubMed  CAS  Google Scholar 

  • Ikemura, T., 1981. Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respec tive codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E. coli translational system. J. Mol. Biol. 151: 389–409.

    Article  PubMed  CAS  Google Scholar 

  • Ikemura, T., 1982. Correlation between the abundance of yeast trans fer RNAs and the occurrence of the respective codons in protein genes. Differences in synonymous codon choice patterns of yeast and Escherichia coli with reference to the abundance of isoaccepting transfer RNAs. J. Mol. Biol. 158: 573–597.

    Article  PubMed  CAS  Google Scholar 

  • Ikemura, T., 1985. Codon usage and tRNA content in unicellular and multicellular organisms. Mol. Biol. Evol. 2: 13–34.

    PubMed  CAS  Google Scholar 

  • Kapoun, A.M. & T.C. Kaufman, 1995. A functional analysis of 5′, intronic and promoter regions of the homeotic gene proboscipedia in Drosophila melanogaster. Development 121: 2127–2141.

    PubMed  CAS  Google Scholar 

  • Kimura, M., 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Kimura, M. & T. Ohta, 1971. Protein polymorphism as a phase of molecular evolution. Nature, Lond. 229: 467–469.

    Article  CAS  Google Scholar 

  • Kirby, D.A., S.V. Muse & W. Stephan, 1995. Maintenance of pre-mRNA secondary structure by epistatic selection. Proc. Natl. Acad. Sci. USA 92: 9047–9051.

    Article  PubMed  CAS  Google Scholar 

  • Kliman, R.M. & J. Hey, 1993. Reduced natural selection associated with low recombination in Drosophila melanogaster. Mol. Biol. Evol. 10: 1239–1258.

    PubMed  CAS  Google Scholar 

  • Kliman, R.M. & J. Hey, 1994. The effects of mutation and natural selection on codon bias in the genes of Drosophila. Genetics 137: 1049–1056.

    PubMed  CAS  Google Scholar 

  • Kohler, J., S. Schafer-Preuss & D. Buttgereit, 1996. Related enhancers in the intron of the beta1 tubulin gene of Drosophila melanogaster are essential for maternal and CNS-specific expres sion during embryogenesis. Nucleic Acids Res. 24: 2543–2550.

    Article  PubMed  CAS  Google Scholar 

  • Laurie, C.C. & L.F. Stam, 1994. The effect of an intronic polymorphism on alcohol dehydrogenase expression in Drosophila melanogaster. Genetics 138: 379–385.

    PubMed  CAS  Google Scholar 

  • Leicht, B.G., S.V. Muse, M. Hanczyc & A.G. Clark, 1995. Constraints on intron evolution in the gene encoding the myosin alkali light chain in Drosophila. Genetics 139: 299–308.

    PubMed  CAS  Google Scholar 

  • Li, W.H., 1987. Models of nearly neutral mutations with particular implications for nonrandom usage of synonymous codons. J. Mol. Evol. 24: 337–345.

    Article  PubMed  CAS  Google Scholar 

  • Maynard Smith, J. & N.H. Smith, 1996. Site-specific codon bias in bacteria. Genetics 142: 1037–1043.

    Google Scholar 

  • McCullough, A.J. & M.A. Schuler, 1993. AU-rich intronic elements affect pre-mRNA 5′ splice site selection in Drosophila melanogaster. Mol. Cell. Biol. 13: 7689–7697.

    PubMed  CAS  Google Scholar 

  • McDonald, J.H. & M. Kreitman, 1991. Adaptive protein evolution at the Adh locus in Drosophila [see comments]. Nature 351: 652–654.

    Article  PubMed  CAS  Google Scholar 

  • McKenzie, R.W. & M.D. Brennan, 1996. The two small introns of the Drosophila affinidisjuncta Adh gene are required for normal transcription. Nucleic Acids Res. 24: 3635–3642.

    Article  PubMed  CAS  Google Scholar 

  • Moriyama, E.N. & T. Gojobori, 1992. Rates of synonymous sub stitution and base composition of nuclear genes in Drosophila. Genetics 130: 855–864.

    PubMed  CAS  Google Scholar 

  • Moriyama, E.N. & D.L. Hartl, 1993. Codon usage bias and base composition of nuclear genes in Drosophila. Genetics 134: 847–858.

    PubMed  CAS  Google Scholar 

  • Mount, S.M., C. Burks, G. Hertz, G.D. Stormo, O. White & C. Fields, 1992. Splicing signals in Drosophila: intron size, infor mation content, and consensus sequences. Nucleic Acids Res. 20: 4255–4262.

    Article  PubMed  CAS  Google Scholar 

  • Muller, H.J., 1964. The relation of recombination to mutational advance. Mutation Research 1: 2–9.

    Article  Google Scholar 

  • Nagylaki, T., 1983. Evolution of a finite population under gene conversion. Proc. Natl. Acad. Sci. USA 80: 6278–6281.

    Article  PubMed  CAS  Google Scholar 

  • Nicolas, A. & T.D. Petes, 1994. Polarity of meiotic gene conversion in fungi: contrasting views. Experimentia 50: 242–252.

    Article  CAS  Google Scholar 

  • Powell, J.R., A. Caccone, J.M. Gleason & L. Nigro, 1993. Rates of DNA evolution in Drosophila depend on function and develop mental stage of expression. Genetics 133: 291–298.

    PubMed  CAS  Google Scholar 

  • Rand, D.M., M. Dorfsman & L.M. Kann, 1994. Neutral and nonneutral evolution of Drosophila mitochondrial DNA. Genetics 138: 741–756.

    PubMed  CAS  Google Scholar 

  • Sawyer, S.A., D.E. Dykhuizen & D.L. Hartl, 1987. Confidence interval for the number of selectively neutral amino acid poly morphisms. Proc. Natl. Acad. Sci. USA 84: 6225–6228.

    Article  PubMed  CAS  Google Scholar 

  • Sawyer, S.A. & D.L. Hartl, 1992. Population genetics of polymor phism and divergence. Genetics 132: 1161–1176.

    PubMed  CAS  Google Scholar 

  • Schaeffer, S.W. & E.L. Miller, 1993. Estimates of linkage disequi librium and the recombination parameter determined from seg regating nucleotide sites in the alcohol dehydrogenase region of Drosophila pseudoobscura. Genetics 135: 541–552.

    PubMed  CAS  Google Scholar 

  • Shapiro, H.S., 1976. Distribution of purine and pyrimidines in deoxyribonucleic acids, pp. 241–281. In CRC Handbook of Bio chemistry and Molecular Biology, edited by G.D. Fasman. CRC Press, Cleveland.

    Google Scholar 

  • Sharp, P.M., 1989. Evolution at’ silent’ sites in DNA, pp. 23–32. In Evolution and Animal Breeding: Reviews in Molecular and Quentitative Approaches in Honour of Alan Robertson, edited by W.G. Hill, and T.F.C. Mackay. CAB International, Wallingford, U.K.

    Google Scholar 

  • Sharp, P.M. & E. Cowe, 1991. Synonymous codon usage in Saccharomyces cerevisiae. Yeast 7: 657–678.

    Article  PubMed  CAS  Google Scholar 

  • Sharp, P.M. & W.H. Li, 1986. An evolutionary perspective on syn onymous codon usage in unicellular organisms. J. Mol. Evol. 24: 28–38.

    Article  PubMed  CAS  Google Scholar 

  • Sharp, P.M. & W.H. Li, 1987. The rate of synonymous substitution in enterobacterial genes is inversely related to codon usage bias. Mol. Biol. Evol. 4: 222–230.

    PubMed  CAS  Google Scholar 

  • Sharp, P.M. & W.H. Li, 1989. On the rate of DNA sequence evolution in Drosophila. J. Mol. Evol. 28: 398–402.

    Article  PubMed  CAS  Google Scholar 

  • Sharp, P.M. & A.T. Lloyd, 1993. Regional base composition varia tion along yeast chromosome III: evolution of chromosome pri mary structure. Nucleic Acids Res. 21: 179–183.

    Article  PubMed  CAS  Google Scholar 

  • Sharp, P.M., M. Stenico, J.F. Peden & A.T. Lloyd, 1993. Codon usage: mutational bias, translational selection, or both?. Biochem. Soc. Trans. 21: 835–841.

    PubMed  CAS  Google Scholar 

  • Shibata, H. & T. Yamazaki, 1995. Molecular evolution of the dupli cated Amy locus in the Drosophila melanogaster species sub group: concerted evolution only in the coding region and an excess of nonsynonymous substitutions in speciation. Genetics 141: 223–236.

    PubMed  CAS  Google Scholar 

  • Shields, D.C., P.M. Sharp, D.G. Higgins & F. Wright, 1988. ’silent’ sites in Drosophila genes are not neutral: evidence of selection among synonymous codons. Mol. Biol. Evol. 5: 704–716.

    PubMed  CAS  Google Scholar 

  • Sokal, R.R. & F.J. Rohlf, 1981. Biometry. W.H. Freeman & Co., New York.

    Google Scholar 

  • Stephan, W. & D.A. Kirby, 1993. RNA folding in Drosophila shows a distance effect for compensatory fitness interactions. Genetics 135: 97–103.

    PubMed  CAS  Google Scholar 

  • Sueoka, N., 1962. On the genetic basis of variation and heterogeneity of DNA base composition. Proc. Natl. Acad. Sci. USA 48: 582–592.

    Article  PubMed  CAS  Google Scholar 

  • Sueoka, N., 1988. Directional mutation pressure and neutral molecular evolution. Proc. Natl. Acad. Sci. USA 85: 2653–2657.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, R.H. & J.A. Hunt, 1991. The molecular evolution of the alcohol dehydrogenase locus and the phylogeny of Hawaiian Drosophila. Mol. Biol. Evol. 8: 687–702.

    PubMed  CAS  Google Scholar 

  • Tourmente, S., S. Chapel, D. Dreau, M.E. Drake, A. Bruhat, J.L. Couderc & B. Dastugue, 1993. Enhancer and silencer elements within the first intron mediate the transcriptional regulation of the beta 3 tubulin gene by 20-hydroxyecdysone in Drosophila Kc cells. Insect Biochem. Mol. Biol. 23: 137–143.

    Article  PubMed  CAS  Google Scholar 

  • True, J.R., J.M. Mercer & C.C. Laurie, 1996. Differences in crossover frequency and distribution among three sibling species of Drosophila. Genetics 142: 507–523.

    PubMed  CAS  Google Scholar 

  • Varenne, S., J. Buc, R. Lloubes & C. Lazdunski, 1984. Translation is a non-uniform process: effect of tRNA availability on the rate of elongation of nascent polypeptide chains. J. Biol. Chem. 180: 549–576.

    CAS  Google Scholar 

  • White, B.N., G.M. Tener, J. Holden & D.T. Suzuki, 1973. Analysis of tRNAs during the development of Drosophila. Dev. Biol. 33: 185–195.

    Article  PubMed  CAS  Google Scholar 

  • Wolfe, K.H., P.M. Sharp & W.H. Li, 1989. Mutation rates differ among regions of the mammalian genome. Nature, London 337: 283–285.

    Article  CAS  Google Scholar 

  • Wright, F., 1990. The ‘effective number of codons’ used in a gene. Gene 87: 23–29.

    Article  PubMed  CAS  Google Scholar 

  • Wright, S., 1938. The distribution of gene frequencies under irre versible mutation. Proc. Natl. Acad. Sci. USA 24: 253–259.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Akashi, H., Kliman, R.M., Eyre-Walker, A. (1998). Mutation pressure, natural selection, and the evolution of base composition in Drosophila . In: Woodruff, R.C., Thompson, J.N. (eds) Mutation and Evolution. Contemporary Issues in Genetics and Evolution, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5210-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5210-5_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6193-3

  • Online ISBN: 978-94-011-5210-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics