Skip to main content

Symbiotic association between Frankia and actinorhizal plants

  • Chapter
Nitrogen Fixation with Non-Legumes

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 79))

Abstract

The actinorhizal symbioses are mutualistic relationships between the actinomycete genus Frankia and a number of dicotyledonous plant genera belonging to eight diverse plant families. Root nodules of actinorhizal plants induced by Frankia are morphologically distinct from legume nodules which are formed by rhizobia. Frankia is relatively conservative in its interaction with its host species, despite its broad host range. Four host-specific groups have been described; however, if one disregards cross-inoculation data from the two promiscuous host genera (Gymnostoma and Myrica), only three major groups need to be defined. There are two modes of root infections: root hair infection and intercellular penetration. Frankia has a mycelial growth habit consisting of two specialized structures: vesicle and sporangium. The vesicle is the multicellular structure where the enzyme nitrogenase is located. To protect this oxygen-sensitive enzyme, the vesicle is morphologically modified from vegetative cells. A multilamellar envelope surrounds it to reduce diffusion of oxygen into the structure. In the sporangium, numerous single-celled sporangiospores are borne. Frankia strains share sequence similarity of their nitrogenase (nif) genes with other nitrogen-fixing bacteria. It is also possible that they share some homology in nodulation (nod) genus with rhizobia. There are variations in effectiveness in N2 fixation among Frankia strains within a group. Nodulated with highly effective strains of Frankia, the actinorhizal plants could play a major role in wood production and soil fertility improvement arising from symbiotic nitrogen fixation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker D 1987. Relationship among pure cultured strains of Frankia based on host specificity. Physiologia Plantarum, 70, 245–248.

    Article  Google Scholar 

  • Baker D, Schwintzer C R 1990. Introduction. In: Schwintzer C R, Tjepkema J D, eds. The Biology of Frankia and Actinorhizal Plants. Academic Press, San Diego, CA, 3–11.

    Google Scholar 

  • Baker D, Selling E 1984. Frankia: new light on an actinomycete symbiont. In Ortiz-Ortiz I, Bojalil L G, Yakoleff V, eds. Biological, Biochemical and Biomedical Aspects of Actinomycetes Academic Press, New York, 563–574.

    Google Scholar 

  • Baker D, O’Keefe D 1984. A modified sucrose fractionation procedure for the isolation of frankiae from actinorhizal root nodules and soil samples. Plant Soil, 78, 23–28.

    Article  Google Scholar 

  • Berry A M 1984. The actinorhizal infection process: review of recent research. In: Klusg M, Reddy C, eds. Current Perspectives in Microbial Ecology. American Society of Microbiology, Washington, 222–229.

    Google Scholar 

  • Callaham D, Del Tredici P, Torrey J G 1978. Isolation and cultivation in vitro of the actinomycete causing root nodulation in Comptonia. Science, 199, 899–902.

    Article  PubMed  CAS  Google Scholar 

  • Callaham D, Newcomb W, Torrey J G, Peterson R L 1979. Root hair infection in actinomycete-induced root nodule initiation in Casuarina, Myrica and Comptonia. Bot. Gaz., 140, 1–9.

    Article  Google Scholar 

  • Coyne P D 1983. Specificity between Casuarina species and root nodule organisms. In Midgley S J, Turnbull J W, Johnston R D, eds. Casuarina Ecology, Management and Utilization CSIRO, Melbourne, 205–210.

    Google Scholar 

  • Dawson J O, Sun S H 1981. The effect of Frankia isolates from Comptonia peregrina and Alnus crispa on the growth of Alnus glutionosa, A. cordata and A. incana clones. Can. J. Forest Res., 11, 758–762.

    Article  Google Scholar 

  • Domenach A M, Kurdal F, Bardin R 1989. Estimation of symbiotic dinitrogen fixation in alder forest by method based on natural 15N abundance. Plant Soil, 118, 51–59.

    Article  CAS  Google Scholar 

  • Gessel S P, Turner J 1974. Litter production by red alder in Wester Washington. For. Sci., 29, 325–330.

    Google Scholar 

  • Jamann S, Fernandez M P, Normand P 1993. Typing method for N2-fixing bacteria based on PCR-RFLP application to the characterization of Frankia strains. Mol. Ecol., 2, 17–26.

    Article  PubMed  CAS  Google Scholar 

  • Miller I M, Baker D 1985. Initiation development and structure of root nodules in Elaeagnus angustifolia L (Elaeagnaceae). Protoplasma, 128, 107–119.

    Article  Google Scholar 

  • Miller K E, Murray M D 1978. The effect of red alder on growth of Douglas-fir. In: Briggs D G, De Bell D S, Atkinson W A, eds. Utilization and Management of Alder USDA Forest Service. General Technical Report PHW-70, 283–306.

    Google Scholar 

  • Nittayajarn A, Mullin B C, Baker D 1990. Screening of symbiotic frankiae for host specificity by restriction fragment length polymorphism analysis. Appl. Environ Microbiol., 56, 1172–1174.

    PubMed  CAS  Google Scholar 

  • Normand P, Lalonde M 1982. Evaluation of Frankia strains isolated from provenances of two Alnus species. Can. J. Microbiol., 28, 1133–1142.

    Article  Google Scholar 

  • Normand P, Simonet P, Bardin R 1988. Conservation of nif sequences in Frankia. Mol. Gen. Genet., 213, 238–246.

    Article  PubMed  CAS  Google Scholar 

  • Normand P, Gouy M, Cournoyer B, Simonet P 1992. Nucleotide sequence of nif D from Frankia alni strain Ar13: phylogenetic inferences. Mol. Biol. Evol., 9, 495–506.

    PubMed  CAS  Google Scholar 

  • Quispel A, Rodriquez-Barrueco C, Subba Rao N S 1993. Some general considerations on symbioses of nitrogen fixing trees. In: Subba Rao N S, Rodriquez C, eds. Symbioses in Nitrogen Fixing Trees. International Science Publishers, New York, 1–32.

    Google Scholar 

  • Reddell P, Bowen 1985. Frankia source affects growth, nodulation and nitrogen fixation in Casuarina species. New Phytol. 100.

    Google Scholar 

  • Reddy A, Torrey J G, Hirsch A M. 1988 Isolation of Frankia strain HFPCcI3 nodulation genes by cross-species complementation of Rhizobium meliloti. In: Palacios R, Verma D P, eds. Molecular Genetics of Plant-Microbe Interactions APS Press, St Paul, MN, 213–214.

    Google Scholar 

  • Sanginga N, Danso SKA, Bowen G D 1989. Nodulation and growth response of Allocasuarina and Casuarina species to phosphorus fertilization. Plant Soil, 118, 125–132.

    Article  Google Scholar 

  • Schultz N A, Benson D R 1989. Developmental potential of Frankia vesicles. J. of Bacteriol., 171, 6874–6877.

    Google Scholar 

  • Simonet P, Nguyen Thi Le, DuCross E T, Bardin R 1988. Identification of Frankia strains by direct DNA hybridization of crushed nodules. Appl. Environ. Microbiol., 54, 2500–2503.

    CAS  Google Scholar 

  • Simonet P, Normand P, Moiroud A, Bardin R 1990. Identification of Frankia strains in nodules by hybridization of polymerase chain reaction products with strain-specific oligonuclectide probes. Arch. Microbiol 153, 235–240.

    CAS  Google Scholar 

  • Torrey J G 1978. Nitrogen fixation by actinomycete-nodulated angiosperms. Bioscience, 28, 586–591.

    Article  Google Scholar 

  • VandenBosch K A, Torrey J G 1984. Consequences of sporangial development for nodule function in root nodules of Comptonia peregrina and Myrica gale. Plant Physiol., 76, 556–560.

    Article  PubMed  CAS  Google Scholar 

  • Yoneyama T, Murakami T, Boonkerd N, Wadisirisuk P, Siripin S, Kouno K 1990. Natural 15N abundance in shrub and tree legumes, Cassuina, and non N2 fixing plants in Thailand. Plants Soil, 128, 287–292.

    Article  CAS  Google Scholar 

  • Yoneyama T, Muraoka T, Murakami T, Boonkerd N 1993. Natural abundance of 15N in tropical plants with emphasis on tree legumes. Plant Soil, 153, 295–304.

    Article  Google Scholar 

  • Youngberg C T, Wollum A G, Scott W 1979. Ceanothus in Douglas-fir clear cuts: Nitrogen accretion and impact on regeneration. In: Gordon J C, Wheeler C T, Perry D A, eds. Symbiotic Nitrogen Fixation in The Management of Temperate Forests. Forest Research Laboratory, Oregon State, Corrallis. Oregon, 224–233.

    Google Scholar 

  • Zhang Z, Murry M A, Torrey J G 1986. Culture conditions influencing growth and nitrogen fixation in Frankia sp. HFPC cl3 isolated from Casuarina. Plant Soil, 91, 3–15.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Boonkerd, N. (1998). Symbiotic association between Frankia and actinorhizal plants. In: Malik, K.A., Mirza, M.S., Ladha, J.K. (eds) Nitrogen Fixation with Non-Legumes. Developments in Plant and Soil Sciences, vol 79. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5232-7_38

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5232-7_38

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6202-2

  • Online ISBN: 978-94-011-5232-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics