Skip to main content

Dust Around Young Stellar Objects

  • Chapter
The Cosmic Dust Connection

Part of the book series: NATO ASI Series ((ASIC,volume 487))

Abstract

In this paper, the properties of circumstellar dust grains located in the environment of young stellar objects will be reviewed. After a short introduction to the field of young stellar objects, the main results of infrared spectroscopy will be discussed. Infrared and millimetre continuum observations form a further topic of this paper. The properties of recent dust models for cocoons and accretion disks are summarized with special emphasis on the dust opacities at millimetre wavelengths.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • E. Anders and N. Grevesse. Abundances of the elements. Geochim. Cosmochim. Acta 53 (1989) 197–214.

    Article  ADS  Google Scholar 

  • A. Bar-Nun, G. Hernzan, D. Laufer and M.L. Rappaport. Trapping and release of gases by water and implications for icy bodies. Icarus 63 (1985) 317–332.

    Article  ADS  Google Scholar 

  • A. Bar-Nun, J. Dror, E. Kochavi and D. Laufer. Amorphous ice and its ability to trap gases. Phys. Rev. B 35 (1987) 2427–2435.

    Article  ADS  Google Scholar 

  • C.D. Black and M.S. Matthews, Eds. Protostars and Planets II, Univ. Arizona Press, Tucson (1985).

    Google Scholar 

  • E. Brown, R.B. Firestone and S.S. Virginia, S.S., Eds. Table of Radioactive Isotopes, John Wiley, New York (1986).

    Google Scholar 

  • A.G.W. Cameron. Physics of the primitive solar accretion disk. Earth Moon Planets 18 (1978) 5–40.

    Article  Google Scholar 

  • R.N. Clayton, R.W. Hinton, D. Laufer and A.M. Davis. Isotopic variations in the rock-forming elements in meteorites. Phil. Trans. Roy. Soc. London Ser. A 325 (1988) 483–501.

    Article  ADS  Google Scholar 

  • L.B. d’Hendecourt, L.J. Allamandola and J.M. Greenberg. Time dependent chemistry in dense molecular clouds I. Grain surface reactions, gas/grain interactions and infrared spectroscopy. Astron. Astrophys. 152 (1985) 130–150.

    ADS  Google Scholar 

  • B. Donn. The accumulation and structure of comets, in Comets in the Post-Halley Era, R.L. Newburn, M. Neugebauer and J. Rahe, Eds., Kluwer Academic Publishers, Dordrecht (1991) pp. 335–359.

    Chapter  Google Scholar 

  • B.T. Draine and E.E. Salpeter. Time-dependent nucleation theory. J. Chem. Phys. 67 (1977) 2230–2235.

    Article  ADS  Google Scholar 

  • S. Engel, J.I. Lunine J.S. Lewis. Solar nebula origin for volatiles in Halley’s comet. Icarus 85 (1997) 380–393.

    Article  ADS  Google Scholar 

  • B. Fegley, Jr. and R.G. Prinn. Solar nebula chemistry: Implications for volatiles in the solar nebula, in The Formation and Evolution of Planetary Systems, H.A. Weaver and L. Danley, Eds., Cambridge Univ. Press., Cambridge (1989) pp. 171–211.

    Google Scholar 

  • J.A. Ghormley. Enthalpy change and heat-capacity changes in the transformation from high surface-area amorphous ice to stable hexagonal ice. J. Chem. Phys. 48 (1968) 503–508.

    Article  ADS  Google Scholar 

  • J.M. Greenberg. Interstellar grain temperature I. Effects of grain materials and radiation fields. Astron. Astrophys. 12 (1971) 240–249.

    ADS  Google Scholar 

  • J.M. Greenberg. Interstellar dust, in Cosmic Dust, J.A.M. McDonnell, Ed., John Wiley and Sons, New York (1978) pp. 187–294.

    Google Scholar 

  • J.M. Greenberg. What are comets made of? A model based on interstellar dust, in Comets, L.L. Wilkening, Ed., Univ. Arizona Press, Tucson, (1982) pp. 131–163.

    Google Scholar 

  • J.M. Greenberg. The interstellar dust model of comets: Post Halley, in Dust in Universe, M. Bailey and D. Williams, Eds., Cambridge University Press, Cambridge, (1988) pp. 121–143.

    Google Scholar 

  • J.M. Greenberg, N.S. Zhao and J.I. Hage. The interstellar dust model of comet dust constrained by 3.4 μm and 10 μm emission. Adv. Space Res. 9 (1989) 3–11.

    Article  ADS  Google Scholar 

  • R. Greenberg, S.J. Weidenschilling, C.R. Chapman and D.R. Davis. From icy planetesimals to outer planets and comets. Icarus 59 (1984) 87–113.

    Article  ADS  Google Scholar 

  • R. J. A. Grim and J.M. Greenberg. Photoprocessing of H2S in interstellar grain mantles as an explanation for S2 in comets. Astron. Astrophys. 181 (1987) 155–168.

    ADS  Google Scholar 

  • J. Haruyama, T. Yamamoto, H. Mizutani and J.M. Greenberg. Thermal history of comets during residence in the Oort cloud: Effect of radiogenic heating in combination with the very low thermal conductivity of amorphous ice. J. Geophys. Res. 98 (1993) 15079–15090.

    Article  ADS  Google Scholar 

  • C. Hayashi. Structure of the solar nebula, growth and decay of magnetic fields and effect of magnetic and turbulent viscosities on the nebula. Suppl. Prog. Theor. Phys. 70 (1981) 35–53.

    Article  ADS  Google Scholar 

  • C. Hayashi, K. Nakazawa and Y. Nakagawa. Formation of the solar system, in Protostars and Planets II, C.D. Black and M.S. Matthews, Eds., Univ. Arizona Press, Tucson (1985) pp. 1100–1153.

    Google Scholar 

  • E.K. Jessberger. Presented at the NATO Summerschool on Interstellar Dust, Erice, June 1994.

    Google Scholar 

  • D. Jewitt and J. Luu. Discovery of candidate Kuiper belt object 1992QB1. Nature 362 (1992) 730–732.

    Article  ADS  Google Scholar 

  • H.U. Keller, C. Arpigny, C. Barbieri, R.M. Bonnets, S. Cazes, M. Corandini, C.B. Cosmovici, W.A. Delamere, W.F. Huebner, D.W. Hughes, C. Jamar, D. Malaise, H.J. Reitsema, H.U. Schmidt, W.H.K. Schmidt, P. Seige, F.L. Whipple and Wilhelm. First Halley multicolour camera imaging results from Giotto. Nature 321 (1986) 320–326.

    Article  ADS  Google Scholar 

  • J. Klinger. Low-temperature heat conduction in pure, monocrystalline ice. J. Glaciol. 14 (1975) 517–528.

    ADS  Google Scholar 

  • J. Klinger. Influence of a phase transition of ice on the heat and mass balance of comets. Science 209 (1980) 271–272.

    Article  ADS  Google Scholar 

  • A. Kouchi. Vapour pressure of amorphous H2O ice and its astrophysical implications. Nature 330 (1987) 550–552.

    Article  ADS  Google Scholar 

  • A. Kouchi. Evaporation of H2O-CO ice and its astrophysical implications. J. Crystal Growth 99 (1990) 1220–1226.

    Article  ADS  Google Scholar 

  • A. Kouchi, J.M. Greenberg, T. Yamamoto and T. Mukai. Extremely low thermal conductivity of amorphous ice: Relevance to comet evolution. Astrophys. J. 388 (1992a) L73–L76.

    Article  ADS  Google Scholar 

  • A. Kouchi, J.M. Greenberg, T. Yamamoto and T. Mukai. A new measurement of thermal conductivity of amorphous ice: Preservation of protosolar nebula matter in comets, in Physics and Chemistry of Ice, N. Maeno and T. Hondoh, Eds., Hokkaido Univ. Press (1992b) pp. 229–236.

    Google Scholar 

  • A. Kouchi, T. Yamamoto, T. Kozasa, T. Kuroda and J.M. Greenberg. Conditions for condensation and preservation of amorphous ice and crystallinity of astrophysical ices. Astron. Astrophys. 209 (1994) 1009–1018.

    ADS  Google Scholar 

  • T. Kozasa and H. Hasegawa. Grain formation through nucleation process in astrophysical environments II. Prog. Theor. Phys. 77 (1987) 1402–1410.

    Article  ADS  Google Scholar 

  • T. Kusaka, T. Nakano and C. Hayashi. Growth of solid particles in the primordial solar nebula. Prog. Theor. Phys. 44 (1970) 1580–1595.

    Article  ADS  Google Scholar 

  • D.E. Laufer, E. Kochvi and A. Bar-Nun. Structure and dynamics of amorphous water ice. Phys. Rev. B 36 (1987) 9219–9227.

    Article  ADS  Google Scholar 

  • A.C. Levasseur-Regourd. Comets and constraints on the solar system formation, in Highlights of Astronomy, Vol. 9 (1992) pp.347–354.

    ADS  Google Scholar 

  • E.H. Levy and J.I. Lunine, Eds. Protostars and Planets HI, Univ. Arizona Press, Tucson (1993).

    Google Scholar 

  • J.S. Lewis. The temperature gradient in the solair nebula. Science 186 (1974) 440–443.

    Article  ADS  Google Scholar 

  • J.S. Lewis and R.G. Prinn. Kinetic inhibition of CO and N2 reduction in the solar nebula. Astrophys. J. 238 (1980) 357–364.

    Article  ADS  Google Scholar 

  • J.I. Lunine. Primitive bodies: Molecular abundances in Comet Halley as probes of cometary formation environment, in The Formation and Evolution of Planetary Systems, H.A. Weaver, L. Danley, and F. Paresce, Eds., Cambridge Univ. Press., Cambridge (1989) pp. 213–242.

    Google Scholar 

  • M.H. Moore, B. Donn and R.L. Hudson. Vaporization of ices containing S2: Implications for comets. Icarus 74 (1988) 399–412.

    Article  ADS  Google Scholar 

  • M.H. Moore, B. Donn, R. Khanna and M.F. A’Hearn. Studies of proton-irradiated cometary-type ice mixtures. Icarus 54 (1983) 388–405.

    Article  ADS  Google Scholar 

  • M.J. Mumma, P.R. Weissman and S.A. Stern. Comets and the origin of the solar system: reading the Rosetta stone, in Protostars and Planets III, E.H. Levy and J.I. Lunine, Eds., Univ. Arizona Press, Tucson (1993) pp. 1177–1252.

    Google Scholar 

  • M.J. Mumma. Presented at the NATO Summerschool on Interstellar Dust, Erice, June 1994.

    Google Scholar 

  • D. Prialnik, A. Bar-Nun and M. Podolak. Radiogenic heating of comets by 26Al and implications for their time of formation. Astrophys. J. 319 (1987) 993–1002.

    Article  ADS  Google Scholar 

  • R.G. Prinn and B. Fegley, Jr. Solar nebula chemistry: Origin of planetary, satellite, and cometary volatiles, in Origin and Evolution of Planetary and Satellite Atmospheres, S. Atrea, J. Pollack and M. Matthews, Eds., Univ. Arizona Press, Tucson (1989) pp. 78–136.

    Google Scholar 

  • H. Rickman. The nucleus of comet Halley: Surface structure, mean density, gas and dust production. Adv. Space Res. 9 (1989) 59–71.

    Article  ADS  Google Scholar 

  • H. Rickman. The thermal history and structure of cometary nuclei, in Comets in the Post-Halley Era, Vol. 2, R.L. Newburn, Jr., M. Neugebauer and J. Rahe, Eds., Kluwer Academic Publishers, Boston (1991) pp. 733–760.

    Google Scholar 

  • A.E. Ringwood. Origin of the Earth and Moon, Springer-Verlag, Berlin, (1979) p. 33.

    Book  Google Scholar 

  • S.C. Robert, Ed. Handbook of Physical Properties of Rocks, Vol. 3, CRC Press, Boca Raton (1984).

    Google Scholar 

  • R.Z. Sagdeev, F. Szabó, G.A. Avanesov, P. Cruvellier, L. Szabó, K. Szegó, A. Abergel, A. Balazs, I.V. Barinov, J.-L. Bertaux, J. Blamont, M. Detaille, E. Demarelis, G.N. Dul’nev, G. Endröczy, M. Gardos, M. Kanyo, V.I. Kostenko, V.A. Krasikov, T. Nguyen-Trong, Z. Nyitrai, I. Reny, P. Rusznyak, V.A. Shamis, B. Smith, K.G. Sukhanov, F. Szabó, S. Szala, V.I. Tarnopolsky, I. Toth, G. Tsukanova, B.I. Valniček, L. Varhalmi, Yu.K. Zaiko, S.I. Zatsepin, Ya.L. Ziman, M. Zsenei and B.S. Zhukov. Television observations of comet Halley from Vega spacecraft. Nature 321 (1986) 262–266.

    Article  ADS  Google Scholar 

  • S.A. Sandford and L.J. Allamandola. The condensation and vaporization behavior of H2O:CO ices and implications for interstellar grains and cometary activity. Icarus 76 (1988) 201–224.

    Article  ADS  Google Scholar 

  • S.A. Sandford, L.J. Allamandola, A.G.G.M. Tielens and G.J. Valero. Laboratory studies of the infrared spectral properties of CO in astrophysical ices. Astrophys. J. 329 (1988) 498–510.

    Article  ADS  Google Scholar 

  • B. Schmitt, S. Espinasse, R.J.A. Grim, J.M. Greenberg and J. Klinger. Laboratory studies of cometary ice analogues, in Proc. Symp. on the Diversity and Similarity of Comets, ESA SP-302 (1989) pp. 613–619.

    Google Scholar 

  • B. Schmitt and J. Klinger. Different trapping mechanisms of gases by water ice and their relevance for cometary nuclei, in Proc. Symp. on the Diversity and Similarity of Comets, ESA SP-278 (1987).

    Google Scholar 

  • B. Schmitt, J.M. Greenberg and R.J.A. Grim. The temperature dependence of the CO infrared band strength in CO:H2O ices. Astrophys. J. 340 (1989) L33–L36.

    Article  ADS  Google Scholar 

  • G. Strazzulla. Presented at the NATO Summerschool on Interstellar Dust, Erice, June 1994.

    Google Scholar 

  • M.K. Wallis. Radiogenic melting of primordial comet interior. Nature 284 (1980) 431–433.

    Article  ADS  Google Scholar 

  • H.A. Weaver. The volatile composition in comets, in Highlights of Astronomy, Vol. 8 (1989) pp. 387–393.

    Article  ADS  Google Scholar 

  • S.J. Weidenshilling. Dust to planetesimals. Icarus 44 (1980) 172–189.

    Article  ADS  Google Scholar 

  • S.J. Weidenshilling. Evolution of grains in a turbulent solar nebula. Icarus 60 (1984) 555–567.

    ADS  Google Scholar 

  • S.J. Weidenshilling and J.N. Cuzzi. Formation of planetesimals in the solar nebula, in Protostars and Planets III, E.H. Levy and J.L. Lunine, Eds., Univ. Arizona Press, Tucson (1993) pp. 1031–1060.

    Google Scholar 

  • F.L. Whipple and R.P. Stefanik. On the physics and splitting of cometary nuclei. Mem. Soc. Roy. Sci. Liège Sér. 512 (1966) 33–52.

    ADS  Google Scholar 

  • S. Yabushita and K. Wada. Radioactive heating and layered structure of cometary nuclei. Earth Moon Planets 40 (1988) 303–313.

    Article  ADS  Google Scholar 

  • T. Yamamoto. Formation environment of cometary nuclei in the primordial solar nebula. Astron. Astrophys. 142 (1985a) 31–36.

    ADS  Google Scholar 

  • T. Yamamoto. Formation history and environment of cometary nuclei, in Ices in the Solar System, J. Klinger, D. Benest, A. Dollfus and R. Smoluchowski, Eds., D. Reidel, Dordrecht (1985b) pp. 205–219.

    Google Scholar 

  • T. Yamamoto. Chemical theories on the origin of comets, in Comets in the Post-Halley Era, Vol. 1, R. Newburn, M. Neugebauer and J. Rahe, Eds., Kluwer Academic Publishers (1991) pp. 361–376.

    Google Scholar 

  • T. Yamamoto and H. Hasegawa. Grain formation through nucleation process in astrophysical environment. Prog. Theor. Phys. 58 (1977) 816–828.

    Article  ADS  Google Scholar 

  • T. Yamamoto and T. Kozasa. The cometary nucleus as an aggregate of planetesimals. Icarus 75 (1988) 540–551.

    Article  ADS  Google Scholar 

  • T. Yamamoto, H. Mizutani and A. Kadota. Are 1992QB1 and 1993FW remnant planetesimals? Publ. Astron. Soc. Japan 46 (1994) L5–L9.

    ADS  Google Scholar 

  • T. Yamamoto, N. Nakagawa and Y. Fukui. The chemical composition and thermal history of the ice of a cometary nucleus. Astron. Astrophys. 122 (1983) 171–176.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Henning, T. (1996). Dust Around Young Stellar Objects. In: Greenberg, J.M. (eds) The Cosmic Dust Connection. NATO ASI Series, vol 487. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5652-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5652-3_30

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6384-5

  • Online ISBN: 978-94-011-5652-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics