Skip to main content

Drawing of melt-spun fibres

  • Chapter
Manufactured Fibre Technology
  • 1085 Accesses

Abstract

The drawing or orientation stretching process is a vital post-spinning operation for a melt-spun fibre. An undrawn fibre deforms inelastically under low loads and has a poor stress value. Such a material has very little utility for most textile applications. Through the drawing operation the fibre is orientationally strengthened due to alignment of the molecular chains along the fibre axis and shows enhanced recovery. Drawing also induces changes in the levels of crystallinity and sometimes in the crystalline form. Both semicrystalline fibres with a lamellar morphology in the undrawn state and amorphous fibres with an entangled network of molecular chains are transformed into a fibrillar structure through the process of drawing. An increase in draw ratio increases the orientational order as well as conformational conversions, resulting in a structure which has much higher strength, modulus and dimensional stability compared with its undrawn state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vincent, P.I. (1960) Polymer, 1(7), 7–19.

    Article  CAS  Google Scholar 

  2. Ludewig, H. (1964) Polyester Fibres Chemistry and Technology, WileyInterscience, London, p. 230.

    Google Scholar 

  3. Thompson, A.B. (1959) J. Polym. Sci., 35, 741.

    Article  Google Scholar 

  4. Spruiell, J.E., McCord, D.E. and Beuerlein, R.A. (1972) Trans. Soc. Rheol., 16(3), 535–555.

    Article  CAS  Google Scholar 

  5. Gupta, V.B., Sett, S.K. and Venkataraman, A. (1990) Polym. Eng. Sci., 30, 1252.

    Article  CAS  Google Scholar 

  6. Kobayashi, K. (1970) Sen-i-Gakkaishi, 26, 550–559.

    Article  Google Scholar 

  7. Brody, H. and Ward, I.M. (1992) In Concise Encyclopedia of Polymer Processing and Applications (ed. P.J. Corish), Pergamon Press, Oxford, pp. 298–299.

    Google Scholar 

  8. Fujimoto, F., Yamaguchi, K., Ikide, H., Kishida, H. and Arai, T. (1973) J. Textile Mach. Soc. Japan, 19, 1–6.

    Article  CAS  Google Scholar 

  9. Sbrolli, W. (1968) In Man-made Fibres, Vol. 2 (eds H.F. Mark, S.M. Atlas and E. Cernia), Interscience Publishers, New York, p. 267.

    Google Scholar 

  10. Gill, R.A. and Benjamin, C. (1979) Polypropylene Fibres and Textiles, 2nd International Conference, Plastic and Rubber Institute, September, pp. 10.1–10.11.

    Google Scholar 

  11. Ito, M., Tanaka, K. and Kanamoto, T. (1987) J. Polym. Sci.,Polym. Phys., 25, 2127–2138.

    Article  CAS  Google Scholar 

  12. Urbanczyk, G.W. (1962) J. Polym. Sci., 59, 215–220.

    Article  CAS  Google Scholar 

  13. Gianchandani, J., Spruiell, J.E. and Clark, E.S. (1982) J. Appl. Polym. Sci., 27, 3527–3551.

    Article  CAS  Google Scholar 

  14. Sakuma, Y. and Rebenfeld, L. (1966) J. Appl. Polym. Sci., 10, 637–652.

    Article  CAS  Google Scholar 

  15. Novak, I.I., Suchikov, V.A. and Zosin, L.P. (1969) Vys. Sod., 11(6), 1325–1329.

    CAS  Google Scholar 

  16. Prevorsek, D.C., Harget, P.G., Sharma, R.K. and Reimschuessel, A.C. (1974) J. Macromol. Sci., Phys., B9, 127–155.

    Google Scholar 

  17. Slutsker, L.I. and Utevskii, L.E. (1984) J. Polym. Sci., Polym. Phys. Ed., 22, 805–826.

    Article  CAS  Google Scholar 

  18. Allison, S.W., Pinnock, P.R. and Ward, I.M. (1966) Polymer, 7, 66.

    Article  CAS  Google Scholar 

  19. Pakhomov, P.M., Pantev, V.A. and Shablygin, M.V. (1979) Khim. Volokna, March-April, pp. 32–34.

    Google Scholar 

  20. Sengupta, A.K., Singh, R.K. and Majumdar, A. (1974) Textile Res. J., 44, 155–163.

    Article  CAS  Google Scholar 

  21. Gribanov, S.A. and Aizenshtein, E.M. (1981) Khim. Volokna, May-June, pp. 18–23.

    Google Scholar 

  22. Fakirov, S. and Evstatiev, M. (1990) Polymer, 31,431.

    Article  CAS  Google Scholar 

  23. Brody, H. (1983) J. Macromol. Sci., Phys., B22(3), 407–423.

    Article  CAS  Google Scholar 

  24. Yoon, K.J., Desai P. and Abhiraman, A.S. (1986) J. Polym. Sci., Polym. Phys. Ed., 24, 1665–1674.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sengupta, A.K. (1997). Drawing of melt-spun fibres. In: Gupta, V.B., Kothari, V.K. (eds) Manufactured Fibre Technology. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5854-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5854-1_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6473-6

  • Online ISBN: 978-94-011-5854-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics