Skip to main content

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 81))

  • 561 Accesses

Abstract

The convenience of coherent state representation is discussed from the viewpoint of what is in a broad sense called the measurement problem in quantum mechanics. Standard quantum theory in coherent state representation is intrinsically related to a number of earlier concepts conciliating quantum and classical processes. From a natural statistical interpretation, free of collapses or measurements, the usual von Neumann-Liiders collapse as well as its quantum state diffusion interpretation follow. In particular, a theory of coupled quantum and classical dynamics arises, containing the fluctuation corrections versus the fenomenological mean-field theories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. von Neumann, Matematische Grundlagen der Quanten Mechanik (Springer, Berlin, 1932).

    Google ScholarĀ 

  2. G. LĆ¼ders, Ann. Phys. (Leipzig) 8, 322 (1951).

    MATHĀ  Google ScholarĀ 

  3. V. Bargmann, Commun. Pure Appl. Math. 14, 187 (1961). R.J.Glauber, Phys. Rev. 131, 2766 (1963); see also in the recent textbook [4].

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  4. D.F. Walls and G.J. Milburn, Quantum Optics (Springer, Berlin, 1994).

    MATHĀ  Google ScholarĀ 

  5. A. Lonke, J. Math. Phys. 19, 1110 (1978).

    ArticleĀ  MathSciNetĀ  ADSĀ  Google ScholarĀ 

  6. J.S. Bell, Phys. World 3, 33 (1990).

    Google ScholarĀ 

  7. This equation preserves the positivity of Ļ(x, p) provided certain analiticity conditions are satisfied initially. It preserves the pure state property of Ļ though all forthcoming formulae will be valid for mixtures as well. The proofs will be given elsewhere. The Eq. (10) has an equivalent compact form: On the very right, one may observe the classical Liouville evolution equation to appear in the lowest order of the derivatives.

    Google ScholarĀ 

  8. Full symmetrization (Weyl-ordering) is defined by the recursive rules while

    Google ScholarĀ 

  9. L. DiĆ³si, Quant Semiclass. Opt. 8, 309 (1996). L.DiĆ³si, ā€œA true equation to couple classical and quantum dynamics,ā€ e-print archives quant-ph/9610028.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  10. I.V. Aleksandrov, Z. Naturf. 36A, 902 (1981).

    ADSĀ  Google ScholarĀ 

  11. W. Boucher and J. Traschen, Phys. Rev. D 37, 3522 (1988).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  12. Expansion in the derivatives yields the form showing the tricky combination of Liouvilleā€™s classical and Schrƶdingerā€™s quantum evolutions. The first line of the r.h.s. is identical to the Aleksan-drov-bracket [10] which, in itself, would violate the positivity of Ļ [11].

    Google ScholarĀ 

  13. Proofs will be given elsewhere.

    Google ScholarĀ 

  14. N. Gisin and I.C. Percival, J. Phys. A 25, 5677 (1992).

    ArticleĀ  MathSciNetĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  15. L. DiĆ³si, J. Phys. A 21, 2885 (1988).

    ArticleĀ  MathSciNetĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  16. Obviously, if the quantum fluctuation of the ā€œcurrentā€ ĵ is small enough then the last two r.h.s. terms go away. If, furthermore, the states Ļc(x, p) and are smooth enough functions of (itx, p) then all r.h.s. terms can be ignored and we are left with the standard mean-field equation

    Google ScholarĀ 

  17. T.N. Sherry and E.C.G. Sudarshan, Phys. Rev. D 18, 4580 (1978).

    ArticleĀ  MathSciNetĀ  ADSĀ  Google ScholarĀ 

  18. G.G. de Polavieja, Phys. Lett. 220A, 303 (1996).

    ADSĀ  Google ScholarĀ 

  19. L. DiĆ³si, N. Gisin, J. Halliwell, and I.C. Percival, Phys. Rev. Lett. 74, 203 (1995).

    ArticleĀ  MathSciNetĀ  ADSĀ  MATHĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

DiĆ³si, L. (1997). Coherent States and the Measurement Problem. In: Ferrero, M., van der Merwe, A. (eds) New Developments on Fundamental Problems in Quantum Physics. Fundamental Theories of Physics, vol 81. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5886-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5886-2_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6487-3

  • Online ISBN: 978-94-011-5886-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics