Skip to main content

The protective role of glutathione

The Effect of Congenital Defects of Glutathione Metabolism on the Function of Erythrocytes, Eye Lens Cells, and Phagocytic Leukocytes. A Review and Some Personal Observations

  • Chapter
Inborn Errors of Immunity and Phagocytosis

Abstract

Many biological oxidations proceed via formation of radicals and/or peroxides. The tripeptide γ-glutamylcysteinylglycine or reduced glutathione (GSH) is known to protect cells against oxidative damage. This function can be executed in three different ways:

  1. 1.

    GSH, like other thiols, can act as a radical acceptor1, thereby forming the disulphide GSSG (oxidized glutathione):

    $$GSH + R. \to GS.RH2GS. \to GSSG$$
  2. 2.

    Peroxides may be eliminated either by catalase (in case of hydrogen (peroxide) or by GSH in the glutathione peroxidase reaction2:

  3. 3.

    Oxidative reactions may also give rise to formation of disulphide bridges in proteins, often leading to unfolding and denaturation of these proteins. Glutathione is able to restore the function of these proteins by reduction of such disulphides, with formation of mixed disulphides as intermediates3,4:

    $$GSH + R - S - S - R' \rightleftharpoons G - S - S - R + R' - SHGSH + G - S - S - R \rightleftharpoons GSSG + R - SH$$

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kossower, E. M. (1976). Chemical properties of glutathione. In I. M. Arias and W. B. Jakoby (eds.). Glutathione, Metabolism and Function, p. 1 (New York: Raven Press)

    Google Scholar 

  2. Flohé, L. and Giinzler, W. A. (1974). Glutathione peroxidase. In L. Flohé, H. Ch. Benöhr, H. Sies, H. D. Waller and A. Wendel (eds.). Glutathione. Proc. 16th Conf. German Soc. Biol. Chem., p. 132 (Stuttgart: Georg Thieme Publishers)

    Google Scholar 

  3. Flohé, L. and Giinzler, W. A. (1976). Glutathione-dependent enzymatic oxidoreduction reactions. In I. M. Arias and W. B. Jakoby (eds.). Glutathione, Metabolism and Function, p. 17. (New York: Raven Press)

    Google Scholar 

  4. Hartter, P. and Weber, U. (1974). The thiol-disulfide exchange reactions of asymmetric disulfides of cysteine and cyclic cysteine peptides with G-SH. In L. Flohé, H. Ch. Benöhr, H. Sies, H. D. Waller and A. Wendel (eds.). Glutathione. Proc. 16th Conf. German Soc. Biol. Chem., p. 29. (Stuttgart: Georg Thieme Publishers)

    Google Scholar 

  5. Beutler, E. and Srivastava, S. K. (1974). G-SH metabolism of the lens. In L. Flohé, H. Ch. Benöhr, H. Sies, H. D. Waller and A. Wendel (eds.). Glutathione. Proc. 16th Conf. German Soc. Biol. Chem., p. 201. (Stuttgart: Georg Thieme Publishers)

    Google Scholar 

  6. Srivastava, S. K. and Beutler, E. (1970). Glutathione metabolism of the erythrocyte. The enzymic cleavage of glutathione-haemoglobin preparations by glutathione reductase. Biochem. J., 119, 353

    PubMed  CAS  Google Scholar 

  7. Beutler, E. (1974). Glutathione reductase. In L. Flohé, H. Ch. Benöhr, H. Sies, H. D. Waller and A. Wendel (eds.). Glutathione. Proc. 16th Conf. German Soc. Biol. Chem., p. 109. (Stuttgart: Georg Thieme Publishers)

    Google Scholar 

  8. Kossower, E. M. and Kossower, N. S. (1976). Chemical basis of the perturbation of glutathione-glutathione disulfide status of biological systems by diazenes. In I. M. Arias and W. B. Jakoby (eds.). Glutathione, Metabolism and Function, p. 139. (New York: Raven Press)

    Google Scholar 

  9. Kossower, E. M. and Kossower, N. S. (1974). Manifestations of changes in the G-SH — G-S-S-G status of biological systems. In L. Flohé, H. Ch. Benöhr, H. Sies, H. D. Waller and A. Wendel (eds.). Glutathione. Proc. 16th Conf. German Soc. Biol. Chem., p. 287. (Stuttgart: Georg Thieme Publishers)

    Google Scholar 

  10. Hochberg, A., Rigby, M. and Dimant, E. (1961). The incorporation in vitro of glycine and L-glutamic acid into glutathione of human erythrocytes. Biochim. Biophys. Acta, 90, 464

    Article  Google Scholar 

  11. Boivin, P. and Galand, C. (1965). La synthèse du glutathion au cours de l’anémie hémolytique congénitale avec déficit en glutathion réduit. Déficit congénital en glutathion synthétase érythrocytaire? Nouv. Rev. Franç Hématol., 5, 707

    CAS  Google Scholar 

  12. Meister, A. (1974). Biosynthesis and utilization of glutathione; the γ- glutamyl cycle and its function in amino acid transport. In L. Flohé, H. Ch. Benöhr, H. Sies, H. D. Waller and A. Wendel (eds.). Glutathione. Proc. 16th Conf. German Soc. Biol. Chem., p. 56. (Stuttgart: Georg Thieme Publishers)

    Google Scholar 

  13. Meister, A. (1976). Glutathione and the γ-glutamyl cycle. In I. M. Arias and W. B. Jakoby (eds.). Glutathione, Metabolism and Function, p. 35. (New York: Raven Press)

    Google Scholar 

  14. Chasseaud, L. F. (1974). Glutathione S-transferases. In L. Flohé, H. Ch. Benöhr, H. Sies, H. D. Waller and A. Wendel (eds.). Glutathione. Proc. 16th Conf. German Soc. Biol. Chem., p. 90. (Stuttgart: Georg Thieme Publishers)

    Google Scholar 

  15. Chasseaud, L. F. (1976). Conjugation with glutathione and mercapturic acid excretion. In I. M. Arias and W. B. Jakoby (eds.). Glutathione, Metabolism and Function, p. 77. (New York: Raven Press)

    Google Scholar 

  16. Srivastava, S. K. and Beutler, E. (1969). The transport of oxidized glutathione from human erythrocytes. J. Biol. Chem., 244, 9

    PubMed  CAS  Google Scholar 

  17. Srivastava, S. K. and Beutler, E. (1969). Cataract produced by tyrosinase and tyrosine systems in rabbit lens in vitro. Biochem. J., 112, 421

    PubMed  CAS  Google Scholar 

  18. Sies, H., Gerstenecker, C., Menzel, H. and Flohé, L. (1972). Oxidation in the NADP system and release of GSSG from hemoglobin-free perfused rat liver during peroxidatic oxidation of glutathione by hydroperoxides. FEBS Lett., 27, 171

    Article  PubMed  CAS  Google Scholar 

  19. Smith, J. E. (1974). Relationship of in vivo erythrocyte glutathione flux to the oxidized glutathione transport system. J. Lab. Clin. Med., 83, 444

    PubMed  CAS  Google Scholar 

  20. Misra, H. P. and Fridovich, I. (1972). The generation of superoxide radical during the autoxidation of hemoglobin. J. Biol. Chem., 247, 6960

    PubMed  CAS  Google Scholar 

  21. Jacob, H. S., Ingbar, S. H. and Jandl, H. S. (1965). Oxidative hemolysis and erythrocyte metabolism in hereditary acatalasia. J. Clin. Invest., 44, 1187

    Article  PubMed  CAS  Google Scholar 

  22. Aebi, H. and Suter, H. (1974). Protective function of reduced glutathione (G-SH) against the effect of prooxidative substances and of irradiation in the red cell. In L. Flohé, H. Ch. Benöhr, H. Sies, H. D. Waller and A. Wendel (eds.). Glutathione. Proc. 16th Conf. German Soc. Biol. Chem., p. 192. (Stuttgart: Georg Thieme Publishers)

    Google Scholar 

  23. Gross, R. T., Bracci, R., Rudolph, N., Schroeder, E. and Kochen, J. A. (1967). Hydrogen peroxide toxicity and detoxification in the erythrocytes of newborn infants. Blood, 29, 481

    PubMed  CAS  Google Scholar 

  24. Zeller, E. A. (1953). Contribution to the enzymology of the normal and cataractous lens. III. On the catalase of the crystalline lens. Am. J. Ophthalmol., 36, 51

    PubMed  CAS  Google Scholar 

  25. Strauss, R. R., Paul, B. B., Jacobs, A. A. and Sbarra, A. J. (1969). The role of the phagocyte in host-parasite interactions. XIX. Leukocytic glutathione reductase and its involvement in phagocytosis. Arch. Biochem. Biophys., 135, 265

    Article  PubMed  CAS  Google Scholar 

  26. Konrad, P. N., Richards, F., Valentine, W. N. and Paglia, D. E. (1972). γ-Glutamyl cysteine synthetase deficiency; a cause of hereditary hemolytic anemia. N. Engl. J. Med., 286, 557

    Article  PubMed  CAS  Google Scholar 

  27. Oort, M., Loos, J. A. and Prins, H. K. (1961). Hereditary absence of reduced glutathione in the erythrocytes. A new clinical and biochemical entity. Vox Sang., 6, 370

    Article  PubMed  CAS  Google Scholar 

  28. Prins, H. K., Oort, M., Loos, J. A., Zürcher, C. and Beckers, T. A. (1966). Congenital non-spherocytic hemolytic anaemia associated with glutathione deficiency of the erythrocytes. Hematologic, biochemical and genetic studies. Blood. 27, 145

    PubMed  CAS  Google Scholar 

  29. Boivin, P., Galand, C., André, R. and Debray, J. (1966). Anémies hémo- lytiques congénitales avec déficit isolé en glutathion réduit par déficit en glutathion synthétase. Nouv. Rev. Franç. Hématol., 6, 859

    CAS  Google Scholar 

  30. Boivin, P., Galand, C. and Bernard, J. F. (1974). Deficiencies in G-SH biosynthesis. In L. Flohé, H. Ch. Benöhr, H. Sies, H. D. Waller and A. Wendel (eds.). Glutathione. Proc. 16th Conf. German Soc. Biol. Chem., p. 146. (Stuttgart: Georg Thieme Publishers)

    Google Scholar 

  31. Mohler, D. N., Majerus, P. W., Minnich, V., Hess, C. E. and Garrick, M. D. (1970). Glutathione synthetase deficiency as a cause of hereditary hemolytic disease. N. Engl. J. Med., 283, 1253

    Article  PubMed  CAS  Google Scholar 

  32. Larsson, A., Zetterström, R., Hagenfeldt, L., Andersson, R., Dreborg, S. and Hornell, H. (1974). Pyroglutamic aciduria (5-oxoprolinuria), an inborn error of glutathione metabolism. Pediatr. Res., 8, 852

    Article  PubMed  CAS  Google Scholar 

  33. Larsson, A., Zetterström. R., Hörnell, H. and Porath, U. (1976). Erythrocyte glutathione synthetase in 5-oxoprolinuria: Kinetic studies of the mutant enzyme and detection of heterozygotes. Clin. Chim. Acta. 73, 19

    Article  PubMed  CAS  Google Scholar 

  34. Marstein, S., Jellum, E., Halpern, B., Eldjarn, L. and Perry, T. L. (1976). Biochemical studies of erythrocytes in a patient with pyroglutamic acidemia (5-oxoprolinemia). N. Engl. J. Med., 295, 406

    Article  Google Scholar 

  35. Spielberg, S. P., Kramer, L. I., Goodman, S. I., Butler, J., Tietze, F., Quinn, P. and Schulman, J. D. (1977). 5-Oxoprolinuria: biochemical observations and case report. J. Pediatr., 91, 237

    Article  PubMed  CAS  Google Scholar 

  36. Necheles, T. F., Maldonado, N., Barquet-Chediak, A. and Allen, D. M. (1969). Homozygous erythrocyte glutathione-peroxidase deficiency: clinical and biochemical studies. Blood, 33, 164

    PubMed  CAS  Google Scholar 

  37. Necheles, T. F. (1974). The clinical spectrum of glutathione-peroxidase deficiency. In L. Flohé, H. Ch. Benöhr, H. Sies, H. D. Waller and A. Wendel (eds.). Glutathione. Proc. 16th Conf. German Soc. Biol. Chem., p. 173. (Stuttgart: Georg Thieme Publishers)

    Google Scholar 

  38. Necheles, T. F., Boles, T. A. and Allen, D. M. (1968). Erythrocyte glutathione peroxidase deficiency and hemolytic disease of the newborn infant. J. Pediatr., 72, 319

    Article  Google Scholar 

  39. Boivin, P., Galand, C., Hakim, J. and Guéroult, N. (1969). Anémie hémolytique avec déficit en glutathione peroxydase chez un adulte. Enzym. Biol. Clin., 10, 68

    CAS  Google Scholar 

  40. Boivin, P., Galand, C., Hakim, J. and Blery, M. (1970). Déficit en glutathionperoxidase érythrocytaire et anémie hémolitique médicamenteuse. Presse Med., 78, 171

    PubMed  CAS  Google Scholar 

  41. Benedetti, P. (1966). Glutathione peroxidase deficiency. Symposium on Problems of Fetal Distress. (Siena, Italy)

    Google Scholar 

  42. Beutler, E. (1971). Abnormalities of the hexose monophosphate shunt. Semin. Hematol., 8, 311

    PubMed  CAS  Google Scholar 

  43. Beutler, E. (1969). Effect of flavin compounds on glutathione reductase activity: in vivo and in vitro studies. J. Clin. Invest., 48, 1957

    Article  PubMed  CAS  Google Scholar 

  44. Löhr, G. W., Blume, K. G., Rüdiger, H. W. and Arnold, H. (1974). Genetic variability in the enzymatic reduction of oxidized glutathione. In L. Flohé, H. Ch. Benöhr, H. Sies, H. D. Waller, and A. Wendel (eds.). Glutathione. Proc. 16th Conf. German Soc. Biol. Chem., p. 165. (Stuttgart: Georg Thieme Publishers)

    Google Scholar 

  45. Staal, G. E. J., Helleman, P. W., de Wael, J. and Veeger, C. (1969). Purification and properties of an abnormal glutathione reductase from human erythrocytes. Biochim. Biophys. Acta, 185, 39

    PubMed  CAS  Google Scholar 

  46. Loos, J. A., Roos, D., Weening, R. S. and Houwerzijl, J. (1976). Familial deficiency of glutathione reductase in human blood cells. Blood, 48, 53

    PubMed  CAS  Google Scholar 

  47. Brewer, G. J. (1969). 6-Phosphogluconate dehydrogenase and glutathione reductase. In J. J. Yunis (ed.). Biochemical Methods in Red Cell Genetics, p. 139. (New York and London: Academic Press)

    Google Scholar 

  48. Lausecker, C., Heidt, P., Fischer, D., Hartleyb, H. and Löhr, G. W. (1965). Anémie hémolytique constitutionnelle avec déficit en 6-phosphogluconate deshydrogénase. Arch. Franç. Pediatr., 22, 789

    Google Scholar 

  49. Scialom, C., Najean, Y. and Bernard, J. (1966). Anémie hémolytique congénital non-sphérocytaire avec déficit incomplet en 6-phosphogluconate deshydrogénase. Nouv. Rev. Franç. Hématol., 6, 452

    CAS  Google Scholar 

  50. Dern, R. J., Brewer, G. J., Tashian, R. E. and Shows, T. B. (1966). Hereditary variation of erythrocytic 6-phosphogluconate dehydrogenase. /. Lab. Clin. Med., 67, 255

    CAS  Google Scholar 

  51. Kinoshita, J. H. and Merola, L. O. (1973). Oxidation of thiol groups of the human lens. In The Human Lens — in Relation to Cataract. Ciba Foundation Symposium 19 (new series), p. 173. (Amsterdam: Associated Scientific Publishers)

    Google Scholar 

  52. Truscott, R. J. W. and Augusteyn, R. C. (1977). Oxidative changes in human lens proteins during senile nuclear cataract formation. Biochim. Biophys. Acta, 492, 43

    PubMed  CAS  Google Scholar 

  53. Zinkham, W. H. (1961). A deficiency of glucose-6-phosphate dehydrogenase activity in lens from individuals with primaquine-sensitive erythrocytes. Bull. Johns Hopkins Hosp., 109, 206

    Google Scholar 

  54. Westring, D. W. and Pisciotta, A. V. (1966). Anemia, cataracts, and seizures in patients with glucose-6-phosphate dehydrogenase deficiency. Arch. Intern. Med., 118, 385

    Article  PubMed  CAS  Google Scholar 

  55. Helge, H. and Borner, K. (1966). Kongenitale nichtsphärozytäre hämolytische Anämie, Kataract und Glukose-6-phosphat-dehydrogenase Mangel. Deutsch. Med. Wochenschr., 91, 1584

    Article  CAS  Google Scholar 

  56. Cooper, M. R., De Chatelet, L. R., McCall, C. E., La Via, M. F., Spurr, C. L. and Baehner, R. L. (1972). Complete deficiency of leukocyte glucose- 6-phosphate dehydrogenase with defective bactericidal activity. J. Clin. Invest., 51, 769

    Article  PubMed  CAS  Google Scholar 

  57. Johnston, R. B., Jr. and Baehner, R. L. (1970). Improvement of leukocyte bactericidal activity in chronic granulomatous disease. Blood, 35, 350

    PubMed  Google Scholar 

  58. Patriarca, P., Cramer, R., Moncalvo, S., Rossi, F. and Romeo, D. (1971). Enzymatic basis of metabolic stimulation in leukocytes during phagocytosis: The role of activated NADPH oxidase. Arch. Biochem. Biophys., 145, 255

    Article  PubMed  CAS  Google Scholar 

  59. Hohn, D. C. and Lehrer, R. I. (1975). NADPH oxidase deficiency in X- linked chronic granulomatous disease. J. Clin. Invest., 55, 707

    Article  PubMed  CAS  Google Scholar 

  60. Curnutte, J. T., Kipnes, R. S. and Babior, B. M. (1975). Defect in pyridine nucleotide dependent superoxide production by a particulate fraction from the granulocytes of patients with chronic granulomatous disease. N. Engl. J. Med., 293, 628

    Article  PubMed  CAS  Google Scholar 

  61. Segal, A. W. and Peters, T. J. (1976). Characterisation of the enzyme defect in chronic granulomatous disease. Lancet, i, 1363

    Article  Google Scholar 

  62. Briggs, R. T., Karnovsky, M. L. and Karnovsky, M. J. (1977). Hydrogen peroxide production in chronic granulomatous disease. A cytochemical study of reduced pyridine nucleotide oxidase. J. Clin. Invest., 59, 1088

    Article  PubMed  CAS  Google Scholar 

  63. Baehner, R. L., Johnston, R. B., Jr. and Nathan, D. G. (1972). Comparative study of the metabolic and bactericidal characteristics of severely glucose- 6-phosphate dehydrogenase-deficient polymorphonuclear leukocytes and leukocytes from children with chronic granulomatous disease. J. Reticuloendothel. Soc., 12, 150

    PubMed  CAS  Google Scholar 

  64. Gray, G. R., Klebanoff, S. J., Stamatoyannopoulos, G., Austin, T., Naiman, S. C., Yoshida, A., Kliman, M. R. and Robinson, G. S. F. (1973). Neutrophil dysfunction, chronic granulomatous disease and nonspherocytic haemo- lytic anaemia caused by complete deficiency of glucose-6-phosphate dehydrogenase. Lancet, ii, 530

    Article  Google Scholar 

  65. Rodey, G. E., Jacob, H. S., Holmes, B., McArthur, J. R. and Good, R. A. (1970). Leucocyte G-6-PD levels and bactericidal activity. Lancet, i, 355

    Article  Google Scholar 

  66. Holmes-Gray, B. and Good, R. A. (1971). Chronic granulomatous disease of childhood. In R. A. Good and D. W. Fisher (eds.). Immunobiology, Current Knowledge of Basic Concepts in Immunology and their Clinical Applications, p. 55. (Stanford: Sinauer Associates, Inc.)

    Google Scholar 

  67. Reed, P. W. (1969). Glutathione and the hexose monophosphate shunt in phagocytizing and hydrogen peroxide-treated rat leukocytes. J. Biol. Chem., 244, 2459

    PubMed  CAS  Google Scholar 

  68. Noseworthy, J. Jr. and Karnovsky, M. L. (1972). Role of peroxide in the stimulation of the hexose monophosphate shunt during phagocytosis by polymorphonuclear leukocytes. Enzym., 13, 110

    PubMed  CAS  Google Scholar 

  69. Vogt, M. T., Thomas, C., Vassallo, C. L., Basford, R. E. and Gee, J. B. L. (1971). Glutathione-dependent peroxidative metabolism in the alveolar macrophage. J. Clin. Invest., 50, 401

    Article  PubMed  CAS  Google Scholar 

  70. Mandell, G. L. (1972). Functional and metabolic derangements in human neutrophils induced by a glutathione antagonist. J. Reticuloendothel. Soc., 11, 129

    PubMed  CAS  Google Scholar 

  71. Oliver, J. M., Albertini, D. F. and Berlin, R. D. (1976). Effects of glutathione- oxidizing agents on microtubule assembly and microtubule-dependent surface properties of human neutrophils. J. Cell. Biol., 71, 921

    Article  PubMed  CAS  Google Scholar 

  72. Holmes-Gray, B., Haseman, J., Buron, S., Saccoccia, P. and Good, R. A. (1971). The relationship of glutathione levels and metabolism of human leukocytes. Fed. Proc., 30, 693Abs.

    Google Scholar 

  73. Holmes, B., Park, B. H., Malawista, S. E., Quie, P. G., Nelson, D. L. and Good, R. A. (1970). Chronic granulomatous disease in females. A deficiency of leukocyte glutathione peroxidase. N. Engl. J. Med., 283, 217

    Article  PubMed  CAS  Google Scholar 

  74. Baehner, R. L., Gilman, N. and Karnovsky, M. L. (1970). Respiration and glucose oxidation in human and guinea-pig leukocytes: comparative studies. J. Clin. Invest., 49, 692

    Article  PubMed  CAS  Google Scholar 

  75. Rossi, F., Romeo, D. and Patriarca, P. (1972). Mechanism of phagocytosis- associated oxidative metabolism in polymorphonuclear leukocytes and macrophages. J. Reticuloendothel. Soc., 12, 127

    PubMed  CAS  Google Scholar 

  76. Burchill, B. R., Oliver, J. M., Pearson, C. B., Leinbach, E. D. and Berlin, R. D. (1977). Microtubule dynamics and glutathione metabolism in phago- cytizing human polymorphonuclear leukocytes. J. Cell. Biol., 76, 439

    Article  Google Scholar 

  77. Quie, P. G., Kaplan, E. L., Page, A. R., Gruskay, F. L. and Malawista, S. E. (1968). Defective polymorphonuclear leukocyte function and chronic granulomatous disease in two female children. N. Engl. J. Med., 278, 976

    Article  PubMed  CAS  Google Scholar 

  78. Johnston, R. B. Jr. and Newman, S. L. (1977). Chronic granulomatous disease. In The Pediatric Clinics of North America, Vol. 24. p. 365. (Philadelphia: W. B. Saunders)

    Google Scholar 

  79. Windhorst, D. B. and Katz, E. D. (1972). Normal enzyme activities in chronic granulomatous disease leukocytes. J. Reticuloendothel. Soc., 11, 400

    Google Scholar 

  80. De Chatelet, L. R., Shirley, P. S. and McPhail, L. C. (1976). Normal leukocyte glutathione peroxidase activity in patients with chronic granulomatous disease. J. Pediatr., 89, 598

    Article  Google Scholar 

  81. Malawista, S. E. and Gifford, R. H. (1975). Chronic granulomatous disease of childhood (GCD) with leukocyte glutathione peroxidase (LPG) deficiency in a brother and sister: a likely autosomal recessive inheritance. Clin. Res., 23, 416Abs

    Google Scholar 

  82. Matsuda, I., Oka, Y., Taniguchi, N., Furuyama, M., Kodama, S., Arashima, S. and Mitsuyama, T. (1976). Leukocyte glutathione peroxidase deficiency in a male patient with chronic granulomatous disease. J. Pediatr., 88, 581

    Article  PubMed  CAS  Google Scholar 

  83. Serfass, R. E. and Ganther, H. E. (1975). Defective microbicidal activity in glutathione peroxidase-deficient neutrophils of selenium-deficient rats. Nature (London), 255, 640

    Article  CAS  Google Scholar 

  84. Babior, B. M., Kipnes, R. S. and Curnutte, J. T. (1973). Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J. Clin. Invest., 52, 741

    Article  PubMed  CAS  Google Scholar 

  85. Weening, R. S., Roos, D., Van Schaik, M. L. J., Voetman, A. A., De Boer, M. and Loos, J. A. (1978). The role of glutathione in the oxidative metabolism of phagocytic leukocytes. Studies in a family with glutathione reductase deficiency. In F. Rossi, P. L. Patriarca and D. Romeo (eds.). Movement, Metabolism and Bactericidal Mechanisms of Phagocytes, p. 277. (Padova: Piccin Medical Books)

    Google Scholar 

  86. Spielberg, S. P., Boxer, L. A., Oliver, J. M., Butler, E. J. and Schulman, J. D. (1977). Altered phagocytosis and microtubule function in leukocytes from a patient with severe glutathione synthetase deficiency (5-oxoprolinuria). In Proc. Intern. Symp. Inborn Errors of Metabolism in Man. (Basel: S. Karger) (In press)

    Google Scholar 

  87. Oliver, J. M., Spielberg, S. P., Pearson, C. B. and Schulman, J. D. (1978). Microtubule assembly and function in normal and glutathione synthetase- deficient polymorphonuclear leukocytes. J. Immunol., 120, 1131

    Google Scholar 

  88. Roos, D. Unpublished observations

    Google Scholar 

  89. Aebi, H. and Suter, H. (1969). Catalase. In J. J. Yunis (ed.). Biochemical Methods in Red Cell Genetics, p. 255. (New York: Academic Press)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 The Society for the Study of Inborn Errors of Metabolism

About this chapter

Cite this chapter

Roos, D., Weening, R.S., Loos, J.A. (1979). The protective role of glutathione. In: Güttler, F., Seakins, J.W.T., Harkness, R.A. (eds) Inborn Errors of Immunity and Phagocytosis. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-6197-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-6197-8_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-6199-2

  • Online ISBN: 978-94-011-6197-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics