Skip to main content
  • 536 Accesses

Abstract

We looked into many areas of robotics-related research in chapter 15. Five of these areas are important enough to future robot design to warrant more discussion: natural language processing, speech recognition, legged locomotion, collision avoidance, and neural network computing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Waldrop, M. Mitchell. Natural language understanding. Science, Vol. 224, No. 4647, April 27, 1984.

    Google Scholar 

  2. Deroualt, Anne-Marie, and Bernard Merialdo. Natural language modeling for phoneme to text transcription. IEEE Transactions on Pattern Matching and Machine Intelligence, Vol. PAMI-9, No. 6, Nov. 1986, pp. 742–749.

    Article  Google Scholar 

  3. Poole, Harry H. Computer recognition of speech. The Handbook of Computers and Computing, A. H. Seidman and I. Flores, eds. New York: Van Nostrand Reinhold, 1984, pp. 186–197.

    Google Scholar 

  4. Wallich, Paul. Putting speech recognizers to work. IEEE Spectrum, Vol. 24, No. 4, April 1987, pp. 55–57.

    Google Scholar 

  5. Raibert, M. H., and I. E. Sutherland. Machines that walk. Scientific American, Vol. 248, No. 1, Jan. 1983, pp. 44–53.

    Article  Google Scholar 

  6. Kaneko, M., et al. Basic experiments on a hexapod walking machine (MELWALK-III) with an approximate straight-line link mechanism. Proc.’ 85 ICAR International Conference on Advanced Robotics. Tokyo: Japanese Industrial Robot Association, 1985, pp. 397–404.

    Google Scholar 

  7. Canny, John. Collision detection for moving polyhedra. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-8, No. 2, March 1986, pp. 200–209.

    Article  Google Scholar 

  8. Ramirez, C. A. Stratified levels of risk for collision free robot guidance. Proc. 15th International Symposium on Industrial Robots. Tokyo: Japanese Industrial Robot Association, Sept. 1985, pp. 959–966.

    Google Scholar 

  9. Thorpe, Charles E. Path Relaxation: Path Planning for a Mobile Robot, Technical Report CMU-RI-TR-84-5. Pittsburgh, Pa.: Carnegie-Mellon University, April, 1984.

    Google Scholar 

  10. Crowley, J. L. Navigation for an intelligent mobile robot. IEEE Journal of Robotics and Automation, Vol. RA-1, No. 1, March 1985, pp. 31–41.

    Article  Google Scholar 

  11. Everett, H. R. A multielement ultrasonic ranging array. Robotics Age, July 1985.

    Google Scholar 

  12. Nitzan, David. Development of intelligent robots: Achievements and issues. IEEE Journal of Robotics and Automation, Vol. RA-1, No. 1, March 1985, pp. 3–13.

    Article  Google Scholar 

  13. Flynn, Anita M. Redundant Sensors for Mobile Robot Navigation, Technical Report #859. Cambridge, Mass.: MIT Artificial Intelligence Laboratory, 1985.

    Google Scholar 

  14. Saito, M., et al. The development of a mobile robot for concrete slab finishing. Proc. 15th International Symposium on Industrial Robots. Tokyo: Japanese Industrial Robot Association, Sept. 1985, pp. 71–78.

    Google Scholar 

  15. Julliere, M., L. Marce, and H. Place. A guidance system for a mobile robot. Proc. 13th International Symposium on Industrial Robots. Chicago: Robotics International of SME, April 1983, pp. 13-58-13-67.

    Google Scholar 

  16. Dillman, R., and U. Rembold. Autonomous robot of the University of Karlsruhe. Proc. 15th International Symposium on Industrial Robots. Tokyo: Japanese Industrial Robot Association, Sept. 1985, pp. 91–101.

    Google Scholar 

  17. Crowley, J. L. Dynamic World Modeling for an Intelligent Mobile Robot Using a Rotating Ultra-Sonic Ranging Device, Technical Report CMU-RI-84-27. Pittsburgh, Pa.: Carnegie-Mellon University, Dec. 1984.

    Google Scholar 

  18. Hopfield, John J., and David W. Tank. Computing with neural circuits: A model. Science, Vol. 233, Aug. 8, 1986, pp. 625–633.

    Article  Google Scholar 

  19. Lippmann, Richard P. An introduction to computing with neural nets. IEEE ASSP Magazine, Vol. 4, No. 2, April 1987, pp. 4–22.

    Article  Google Scholar 

  20. Hopfield and Tank, Computing with neural circuits.

    Google Scholar 

  21. Sejnowski, T., and C. Rosenberg. NETtalk: A Parallel Network That Learns to Read Aloud, Technical Report JHU/EECS-86/01. Baltimore, Md.: Johns Hopkins University, 1986.

    Google Scholar 

  22. Tank, D. W., and J. J. Hopfield. Simple neural optimization networks: An A/D converter, signal decision circuit, and a linear programming circuit. IEEE Transactions on Circuits and Systems, Vol. CAS-33, No. 5, 1986, pp. 533–541.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Van Nostrand Reinhold

About this chapter

Cite this chapter

Poole, H.H. (1989). New Technology. In: Fundamentals of Robotics Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-7050-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-7050-5_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-7052-9

  • Online ISBN: 978-94-011-7050-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics