Skip to main content

Chemistry and Biochemistry of Trace Metals in Biological Systems

  • Chapter
Effect of Heavy Metal Pollution on Plants

Part of the book series: Pollution Monitoring Series ((PMS))

Abstract

The past three decades have seen a remarkable advance in the appreciation of the significant role played by the so-called ‘trace metals’ in the health and productivity of plants. The effort has been spread widely, from the macroecological viewpoint at one extreme, down to the molecular viewpoint and, encouragingly, some highly successful attempts have been made to deal with the intimate details of the actions of metal ions, both ‘essential’ and ‘toxic’ Whilst it is certainly true that real advances have been made over a broad front, it is also disturbingly true that the picture remains fragmented, and as with most areas of scientific research today, the sheer volume of experimental data now available makes it impossible to scrutinise more than a fraction of the existing material. The problem is aggravated by the constant necessity to make a critical re-appraisal of much published material, since it is sadly apparent that the quantity of data greatly outweighs its quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abercrombie. F. N., M. D. Silvester and R. B. Cruz (1979). Simultaneous multielement analysis of biologically related samples with RF-ICP. In: Ultratrace Metal Analysis in Biological Sciences and the Environment (T. M. Risby (ed.)), American Chemical Society, Washington, pp. 10–27.

    Google Scholar 

  • Agemian. H. and A. S-Y. Chau (1977). A study of different analytical extraction methods for non-detrital heavy metals in aquatic sediments. Arch. Environ. Contain. Toxicol. 6: 69–82.

    Google Scholar 

  • Ahrland. S., J. Chatt and N. R. Davies (1958). The relative affinities of ligand atoms for acceptor molecules and ions. Q. Rev. Chem. Soc. 12: 265–76.

    Google Scholar 

  • Alexander, G. V. and L. T. McAnulty (1981). Multielement analysis of plant related tissues and fluids by optical emission spectrometry. Proceedings of symposium on trace element stress in plants, U.C.L.A. J. Plant Nutr. 3: 51–9.

    Google Scholar 

  • Alvarez, R. (1981). NBS plant tissue standard reference materials certified for trace elements. Proceedings of symposium on trace element stress in plants, U.C.L.A. J. Plant Nutr. 3: 113.

    Google Scholar 

  • Batley, G. E. and T. M. Florence (1976). Determination of the chemical forms of dissolved cadmium, lead and copper in sea water. Marine Chem. 4: 347–63.

    Google Scholar 

  • Batley, G. E. and J. P. Matousek (1977). Determination of heavy metals in sea water by atomic absorption spectrometry after electrodeposition on pyrolytic graphite-coated tubes. Anal. Chem. 49: 2031–5.

    Google Scholar 

  • Battelle Columbus Laboratories (1977). Multimedia levels of cadmium. Report EPA-560/6-77-032, Nat. Tech. Information Service, Springfield, Va., 153 pp.

    Google Scholar 

  • Baudin, J. (1977). Analytical methods applied to water pollution. J. Radioanal. Chem. 37: 119–39.

    Google Scholar 

  • Beck, M. T. (1970). Chemistry of Complex Equilibria. Van Nostrand Reinhold, London, 285 pp.

    Google Scholar 

  • Beckett, P. M. T. (1978). An all-element analysis of digested sewage sludge. Water Pollut. Contr. 77: 539–46.

    Google Scholar 

  • Beckett, P. M. T. (1980). The statistical distribution of sewage and sludge analysis. Environ. Pollut. (Ser. B) 1: 27–35.

    Google Scholar 

  • Benes, P. and E. Steinnes (1976). On the use of radionuclides in the study of behaviour and physico-chemical state of trace elements in natural waters. Intern. J. Environ. Anal. Chem. 4: 263–74.

    Google Scholar 

  • Bergerioux, C, J-P. Blanc and W. Haerdi (1977). Preconcentration of environmental trace elements on organic supports for neutron activation and high resolution photon spectrometers. J. Radioanal. Chem. 37: 823–34.

    Google Scholar 

  • Berndt, H. and W. Slavin (1978). Automated trace analysis of small samples using the ‘injection method’ of flame atomic absorption spectrometry. A review. Atomic Absorption Newsletter. 17: 109–12.

    Google Scholar 

  • Bingham, R. A. and P. G. T. Vossen (1975). Review of recent advances in the application of spark source mass spectrometry. Lab. Pract. 24: 233–8.

    Google Scholar 

  • Bone, K. M. and W. D. Hibbert (1979). Solvent extraction with ammonium pyrrolidinedithiocarbamate and 2,6-dimethyl-4-heptanone for the determination of trace metals in effluents and natural waters. Anal. Chim. Acta. 107:219–29.

    Google Scholar 

  • Boumans, P. W. J. M. (1979). ICP atomic emission spectrometry: A multi-element analysis method for liquids and dissolved solids. Sci. Industry. 1-6.

    Google Scholar 

  • Boutron, C. and S. Martin (1979). Preconcentration of dilute solutions at the 10-12 g/g level by nonboiling evaporation with variable variance calibration curves. Anal. Chem. 51: 140–5.

    Google Scholar 

  • Brown, J. C. (1979). Mechanism of iron uptake by plants. Plant, Cell Environ. 1: 249–57.

    Google Scholar 

  • Brown, R. C., R. W. Ellis and D. Weightman (1974). Interlaboratory variations in the measurement of blood-lead levels. Lancet. 4(9): 1112–13.

    Google Scholar 

  • Brown, S. D. and B. R. Kowalski (1979). Minicomputer controlled, background subtracted anodic stripping voltametry. Anal. Chim. Acta. 107:13–27.

    Google Scholar 

  • Buffle, J., F-L. Greter and W. Haerdi (1977). Measurement of complexation properties of humic and fulvic acids in natural waters with lead and copper ionselective electrodes. Anal. Chem. 49: 216–22.

    Google Scholar 

  • Burgess, J. (1978). Metal Ions in Solution. Ellis Horwood, Chichester, England, 481pp.

    Google Scholar 

  • Bye, R., P. E. Paus, R. Solberg and Y. Thomassen (1978). Atomic absorption spectroscopy used as a specific gas chromatography detector. Atomic Absorption Newsletter. 17: 131–4.

    Google Scholar 

  • Cameron, A. J. and G. Nickless (1977). Use of mosses as collectors of airborne heavy metals near a smelting complex. Water Air Soil Pollut. 7: 117–25.

    Google Scholar 

  • Campbell, W. (1979). Energy-dispersive X-ray emission analysis. Analyst. 104:177–95.

    Google Scholar 

  • Cantillo, A. Y. and D. A. Segar (1975). Metal species identification in the environment—A major challenge for the analyst. In: Proc. Internat. Conf. on Heavy Metals in the Environment (T.C. Hutchinson (ed.)) 1, Toronto, 183-204.

    Google Scholar 

  • Cecchetti, G., A. Lannaccone and M. Barbieri (1977). Determination of urinary lead by means of double arc emission spectrography. Annali-Instituto Superiore Sanita. 13: 367–76.

    Google Scholar 

  • Chattopadhay, A. (1977). Optimal use of instrumental neutron and proton activation analyses for multielement determination in sewage sludges. J. Radioanal. Chem. 37: 785–99.

    Google Scholar 

  • Chau, Y. K. and P. T. S. Wong (1977). An element and speciation — Specific technique for the determination of organometallic compounds. In: Environmental Analysis (G. W. Ewing (ed.)), Academic Press, New York, pp. 215–26.

    Google Scholar 

  • Chow, T. J., C. B. Snyder and J. L. Earl (1974). Isotope ratios of lead as pollutant source indicators. In: Proc. Symp. IAEE, Vienna, pp. 95-108.

    Google Scholar 

  • Coombes, A. J., D. A. Phipps and N. W. Lepp (1977). Uptake patterns of free and complexed copper ions in excised roots of barley (Hordeum vulgare L. c.v. Zephyr). Z. Pflanzenphysiol. 82: 435–9.

    Google Scholar 

  • Cox, F. R. and E. J. Kamprath (1972). Micronutrient soil tests. In: Micronutrients in Agriculture (J. J. Mortvedt, P. M. Giordano and W. L. Lindsay (eds)). Soil Sci. Soc. Amer. Madison, Wisconsin, pp.289–317.

    Google Scholar 

  • Crosby, N. T. (1977). Determination of metals in foods. A review. Analyst. 102:225–68.

    Google Scholar 

  • Cumme, G. A. (1973). Calculation of chemical equilibrium concentrations of complexing ligands and metals. Talanta. 20:1009.

    Google Scholar 

  • Czobik, E. J. and J. P. Matousek (1978). Interference effects in furnace atomic absorption spectrometry. Anal. Chem. 50: 2–10.

    Google Scholar 

  • da Silva, J. J. R. F. and R. J. P. Williams (1976). The uptake of elements by biological systems. Structure Bonding. 29: 67–122.

    Google Scholar 

  • Danielsson, L. G., B. Magnusson and S. Westerlund (1978). An improved metal extraction procedure for the determination of trace-metal in sea water by atomic absorption spectrometry with electrothermal atomisation. Anal. Chim. Acta. 98: 47–57.

    Google Scholar 

  • Diamond, J. M. and E. M. Wright (1969). Biological membranes: The physical basis of ion and non-electrolyte selectivity. Ann. Rev. Physiol. 31: 581–646.

    Google Scholar 

  • Djemková, E. and P. Schiller (1978). Determination of lead in air by nuclear analytical methods. Chem. Listy. 72: 364–75.

    Google Scholar 

  • Duchane, D. V. and R. D. Sachs (1978). Atomic emission determination of selected trace elements in microsamples with exploding thin-film excitation. Anal. Chem. 50: 1765–9.

    Google Scholar 

  • Dybczynski, R., A. Tugsavul and O. Suschny (1978a). Report on the intercomparison run Soil-5 for the determination of trace elements in soil. I.A.E.A./RL/4G, Vienna.

    Google Scholar 

  • Dybczynski, R., A. Tugsavul and O. Suschny (1978b). The problem of accuracy and precision in the determination of trace elements in water as shown by recent I.A.E.A. tests. Analyst. 102:733–44.

    Google Scholar 

  • Egan, A. and N.M. Spyrou (1977). Determination of heavy metals in sewage based fertilizer using short-lived isotopes. J. Radioanal. Chem. 37: 775–84.

    Google Scholar 

  • Eller, P. M. and J. C. Haartz (1977). A study of methods for the determination of lead and cadmium. Amer. Ind. Hyg. Assoc. J. 38: 116–24.

    Google Scholar 

  • Engler, R. M., J. M. Brannon and J. Rose (1977). A practical selective extraction procedure for sediment characterisation. In: Chemistry of Marine Sediments (T. F. Yen (ed.)), Ann Arbor, Michigan, pp. 163–71.

    Google Scholar 

  • Ewing, G. W. (1977).Environmental Analysis. Academic Press, London, 344 pp.

    Google Scholar 

  • Fernandez, F. J. (1977). Metal speciation using atomic absorption as a chromatography detector. A review. Atomic Absorption Newsletter. 16: 33–6.

    Google Scholar 

  • Filby, R. H. and K. R. Shah (1974). Activation analysis and applications to environmental research. Toxicol. Environ. Chem. Rev. 2: 1–44.

    Google Scholar 

  • Fitts, J. W. and W. L. Nelson (1950). The determination of lime and fertilizer requirements of soils through chemical tests. Adv. Agron. 8: 241–82.

    Google Scholar 

  • Florence, T. M. (1977). Trace metal species in fresh water. Water Res. 11:681–7.

    Google Scholar 

  • Florence, T. M. and G. E. Batley (1977). Determination of the chemical forms of trace metals in natural waters with special reference to copper, lead, cadmium and zinc. Talanta. 24: 151–8.

    Google Scholar 

  • Foy, C. D., R. L. Chaney and M. C. White (1978). The physiology of metal toxicity in plants. Ann. Rev. Plant Physiol. 29: 511–66.

    Google Scholar 

  • Friend, M. T., C. A. Smith and D. Wishart (1977). Ashing and wet oxidation procedures for the determination of some volatile trace metals in foodstuffs and biological materials by AAS. Atomic Absorption Newsletter. 16:46–9.

    Google Scholar 

  • Fuwa, K. (1977). Preparation and analysis of some environmental standards. In: Environmental Analysis (G. W. Ewing (ed.)), Academic Press, New York, pp. 273-84.

    Google Scholar 

  • Garten, C. T., J. B. Gentry and R. R. Sharitz (1977). An analysis of elemental concentrations in vegetation bordering a Southeastern United States Coastal Plain stream. Ecology. 58: 979–92.

    Google Scholar 

  • Geladi, P. and F. Adams (1978). The determination of cadmium, copper, iron, lead and zinc in aerosols by atomic absorption spectrometry. Anal. Chim. Acta. 96: 229–41.

    Google Scholar 

  • Gendre, G., W. Haerdi, H. R. Linder, B. E. Schreiber and R. W. Frei (1977). Trace element enrichment on chemically modified filter papers. Int. J. Environmental Anal. Chem. 5: 63–75.

    Google Scholar 

  • Giauque, R. D., R. B. Garret and L. Y. Goda (1977). Determination of forty elements in geochemical samples and coal fly ash by X-ray fluorescence spectrometry. Anal. Chem. 49: 1012–17.

    Google Scholar 

  • Gillain, G., G. Duyckaerts and A. Disteche (1979). Direct and simultaneous determination of Zn, Cd, Pb, Cu, Sb and Bi dissolved in sea water by differential pulse anodic stripping voltametry with a hanging mercury drop electrode. Anal. Chim. Acta. 106:23–37.

    Google Scholar 

  • Goodman, G. T. and T. M. Roberts (1971). Plants and soils as indicators of metals in air. Nature (Lond.) 231:287–92.

    Google Scholar 

  • Goodman, G. T. and S. Smith (1975). Moss bags as indicators of airborne metals — An evaluation. Report on a collaborative study on certain elements in air, soil, plants, animals and humans in the Swansea-Neath-Port Talbot area, together with a report on a moss-bag study of atmospheric pollution across South Wales. Welsh Office, Cardiff, pp. 333–65.

    Google Scholar 

  • Goodman, G. T., S. Smith, M. J. Inskip and G. D. R. Parry (1975). Trace metals as pollutants: Monitoring aerial burdens. Proc. Internat. Conf. on Heavy Metals in the Environment (T.C. Hutchinson (ed.)), 2, Toronto, pp. 623-42.

    Google Scholar 

  • Gregoire, D. C., C. L. Chakrabarti and D. C. Bertels (1978). Effect of heating rates in graphite furnace atomic absorption spectrometry. Anal. Chem. 50: 1730–7.

    Google Scholar 

  • Guinn, V. P. and D. A. Miller (1977). Recent instrumental neutron activation analysis studies utilising Very short-lived activities. J. Radioanal. Chem. 37: 313–24.

    Google Scholar 

  • Guy, R. D. and C. L. Chakrabarti (1975). Analytical techniques for speciation in trace metals. In: Proc. Internat. Conf. on Heavy Metals in the Environment (T.C. Hutchinson (ed.)), 1, Toronto, pp. 277-94.

    Google Scholar 

  • Guy, R. D. and C. L. Chakrabarti (1977). Graphite furnace atomic absorption spectrophotometer as a detector in the speciation of trace metals. In: Environmental Analysis (G.W. Ewing (ed.)), Academic Press, New York, pp. 235–44.

    Google Scholar 

  • Haas, W. J., Jr, V. A. Fassel, F. Grabau IV, R. N. Kniseley and W. L. Sutherland (1979). Simultaneous determination of trace elements in urine by inductively coupled plasma-atomic emission spectrometry. In: Ultratrace Metal Analysis in Biological Sciences and the Environment, (T. M. Risby (ed.)), American Chemical Society, Washington, pp. 91–111.

    Google Scholar 

  • Hackett, D. S. and S. Sigsia (1977). Selective concentration and determination of trace-metals using poly-(dithiocarbamate)-chelating ion-exchange resins. In: Environmental Analysis (G. W. Ewing (ed.)). Academic Press, New York, pp. 253–66.

    Google Scholar 

  • Hansen, R. K. and R. H. Hall (1977). An improved general method for the reduction of analytical errors in flame emission and atomic absorption spectrometry. Anal. Chim. Acta. 92: 307–20.

    Google Scholar 

  • Harnly, J. M. and T. C. O’Haver (1977). Background correction for the analysis of high-solids samples by graphite furnace atomic absorption. Anal. Chem. 49: 2187–93.

    Google Scholar 

  • Harrison, R. M. and D. P. H. Laxen (1977). A comparative study of the methods for the analysis of total lead in soils. Water Air Soil Pollut. 8: 387–92.

    Google Scholar 

  • Harrison, S. J., N. W. Lepp and D. A. Phipps (1979). Uptake of copper by excised roots. II. Copper desorption from the free space. Z. Pflanzenphysiol. 94:27–34.

    Google Scholar 

  • Hewitt, E. J. and T. A. Smith (1974). Plant Mineral Nutrition. English Universities Press, London, 298 pp.

    Google Scholar 

  • Hislop, J. S. (1978). Gamma activation analysis: An appraisal. Proc. Anal. Div. Chem. Soc. 15: 193–205.

    Google Scholar 

  • Hodgson, J. F. (1963). Chemistry of the micronutrient elements in soil. Adv. Agron. 15: 119–59.

    Google Scholar 

  • Hodgson, J. F. (1969). Contribution of metal-organic complexing agents to the transport of metals to roots. Soil Sci. Soc. Am. Proc. 33: 68–75.

    Google Scholar 

  • Hodgson, J. F., H. R. Geering and W. A. Norvell (1965). Micronutrient complexes in soil solution. I. Partition between complexed and uncomplexed forms by solvent extraction. Soil Sci. Soc. Am. Proc. 29: 665–9.

    Google Scholar 

  • Hodgson, J. F., W. L. Lindsay and J. F. Trierweiler (1966). Micronutrient cation complexing in soil solution. II. Complexing of zinc and copper in displaced solution from calcareous soils. Soil Sci. Soc. Am. Proc. 30: 723–6.

    Google Scholar 

  • Hudnik, V., S. Gomiscek and B. Gorenc (1978). The determination of trace metals in mineral waters. Anal. Chim. Acta. 98: 39–46.

    Google Scholar 

  • Hughes, M. K., N. W. Lepp and D. A. Phipps (1980). Aerial heavy metal pollution and terrestrial ecosystems. In: Advances in Ecological Research, Vol.11 (A. MacFadyen (ed.)), pp. 218–327.

    Google Scholar 

  • Hughes, M. N. (1972). The Inorganic Chemistry of Biological Processes. John Wiley, New York, 196 pp.

    Google Scholar 

  • Huheey, J. E. (1975). Inorganic Chemistry: Principles of Structure and Reactivity. Harper & Row, New York, 737 pp.

    Google Scholar 

  • Jagner, D. (1978). Instrumental approach to potentiometric stripping analysis of some heavy metals. Anal. Chem. 50: 1924–9.

    Google Scholar 

  • Jewett, G. L., R. P. Himes and O. U. Anders (1977). Chemical separation techniques for neutron activation analysis as used at the Dow Chemical Co. J. Radioanal. Chem. 37: 813–21.

    Google Scholar 

  • Kingston, H. M., I. L. Barnes, T. J. Brady, T. C. Rains and M. A. Champ (1978). Separation of eight transition elements from alkali and alkaline earth elements in estuarine and sea water with chelating resin and their determination by graphite furnace atomic absorption spectrometry. Anal. Chem. 50: 2064–70.

    Google Scholar 

  • Koizumi, H., K. Yasuda and M. Katayama (1977). Atomic absorption spectrophotometry based on the polarisation characteristics of the Zeeman effect. Anal. Chem. 49: 1106–12.

    Google Scholar 

  • Kopp, J. F. (1975). Current status of analytical methodology for trace metals. In: Proc. Internat. Conf. on Heavy Metals in the Environment (T. C. Hutchinson (ed.)), 1, Toronto, pp. 261-74.

    Google Scholar 

  • Kragten, J. (1977). Atlas of Metal-Ligand Equilibria in Aqueous Solution (translated by M. Masson), Ellis Horwood, Chichester, 781 pp.

    Google Scholar 

  • Låg, J. and I. H. Elsokkary (1978). A comparison of chemical methods for estimating Cd, Pb and Zn availability in six food crops grown in industrially polluted soils at Odda, Norway. Acta Agriculturae Scandinavica. 28: 76–80.

    Google Scholar 

  • Lamathe, J. (1979). Selective method of elution for the extraction of heavy metals from sea-water on chelating resin. Anal. Chim. Acta. 104: 307–17.

    Google Scholar 

  • Lapades, D. N. (1974). Dictionary of Scientific and Technical Terms. McGraw-Hill, New York, 674 pp.

    Google Scholar 

  • Larkins, P. L. and A. Walsh (1975). Flame-type resonance spectrometers—A new direction in atomic absorption. In: Proc. Internat. Conf. on Heavy Metals in the Environment (T. C. Hutchinson (ed.)), 1, Toronto, pp. 249-60.

    Google Scholar 

  • Lauwerys, R., J. P. Buclet, M. Roels, A. Berlin and J. Smeets (1975). Intercomparison program of lead, mercury and cadmium analyses in blood, urine and aqueous solutions. Clin. Chem. 21: 551–7.

    Google Scholar 

  • Leckie, J. O. and J. A. Davis (1979). Aqueous environmental chemistry of copper. In: Copper in the Environment. Part I (J. O. Nriagu (ed.)), John Wiley, New York, pp. 89–121.

    Google Scholar 

  • Lee, R. E., Jr, S. S. Goranson, R. E. Enrione and G. B. Morgan (1972). National air surveillance cascade impactor network. II. Size distribution of trace metal particles. Environ. Sci. Technol. 6: 1025–9.

    Google Scholar 

  • Leszko, M. and W. Zaborska (1977). Extraction of cadmium, zinc, lead and copper with octadecyldimethyl-benzammonium chloride in various diluents. Roczniki Chemii. 51: 1961–70.

    Google Scholar 

  • Lewis, G. N. (1923). Valence and the Structure of Molecules. The Chemical Catalogue Co., New York.

    Google Scholar 

  • Lieser, K. M. and W. Calmano (1977). Neutron activation as a routine method for the determination of trace elements in water. J. Radioanal. Chem. 37: 717–26.

    Google Scholar 

  • Lindsay, W. L. (1972). Inorganic phase equilibria of micronutrients in soil. In: Micronutrients in Agriculture (J.J. Mortvedt, P.M. Giordano and W. L. Lindsay (eds)), Soil Sci. Soc. Am., Madison, Wisconsin, pp. 41–57.

    Google Scholar 

  • Lindsay, W. L. (1974). Role of chelation in micronutrient availability. In: The Plant Root and its Environment (E. W. Carson (ed.)), University Press, Charlottesville, Va., pp. 508–24.

    Google Scholar 

  • Linton, R. W., P. Williams, C. A. Evans, Jr and D.F.S. Natusch (1977). Determination of the surface predominance of toxic elements in airborne particles by ion microbe mass-spectrometry and Auger electron spectrometry. Anal. Chem. 49:1514–21.

    Google Scholar 

  • Long, S. J., J. C. Suggs and J. F. Walling (1979). Lead analysis of ambient air particulates: Interlaboratory evaluation of EDA lead reference method. J. Air Pollut. Contr. Assoc. 29: 28–31.

    Google Scholar 

  • Lund, W., Y. Thomassen and P. Bøvle (1977). Flame-atomic absorption analysis for trace metals after electrochemical preconcentration on a wire filament. Anal. Chim. Acta. 93: 53–60.

    Google Scholar 

  • McDuff, R. E. and F. M. M. Morel (1973). Description and use of chemical equilibrium program REDEQL 2. Tech. Rep. EQ.73-02, Lab. of Environmental Engineering Science, California Institute of Technology.

    Google Scholar 

  • McLaren, J. W. and R. C. Wheeler (1977). Double peaks in the atomic-absorption determination of lead using electrothermal atomisation. Analyst. 102:542–6.

    Google Scholar 

  • Malo, B. A. (1977). Partial extraction of metals from aquatic sediments. Environ. Sci. Technol. 11: 277–82.

    Google Scholar 

  • Maloney, M. P., G. J. Moody and J. D. R. Thomas (1977). Extraction and separation of metal ions by foam-supported reagents. Proc. Anal. Div. Chem. Soe. 14: 244–6.

    Google Scholar 

  • Manning, D. C. and W. Slavin (1979). Reduction of matrix interferences for lead determination with the L’vov Platform and the graphite furnace. Anal. Chem. 51:261–5.

    Google Scholar 

  • Mavrodineau, B. (ed.) (1977). Procedures used at the National Bureau of Standards to determine selected trace elements in biological and botanical materials. National Bureau of Standards Special Publication No. 492, NBS, Washington.

    Google Scholar 

  • Menden, E. E. and D. Brockman (1977). Dry ashing of animal tissues for atomic absorption spectrometric determination of zinc, copper, cadmium, lead, iron, manganese, magnesium and calcium. Anal. Chem. 49: 1644–5.

    Google Scholar 

  • Mertz, W. (1979). Present status and future development of trace element analysis in nutrition. In: UItratrace Metal Analysis in Biological Sciences and the Environment (T.H. Risby (ed.)), American Chemical Society, Washington D.C., pp. 1–9.

    Google Scholar 

  • Ministry of Agriculture, Fisheries and Food (1973). Analysis of agricultural materials. Technical Bulletin No. 27, HMSO, London.

    Google Scholar 

  • Moore, M. R. and P. A. Meredith (1977). The storage of samples for blood and water lead analysis. Clinica. Chim. Acta. 75: 167–70.

    Google Scholar 

  • Morel, F. M. M. and J. J. Morgan (1972). A numerical method for computing equilibria in aqueous chemical systems. Environ. Sci. Technol. 6: 58–67.

    Google Scholar 

  • Morel, F. M. M., R. E. McDuff and J. J. Morgan (1973). Interactions and chemostasis in aquatic chemical systems: Role of pH, pε, solubility and complexation. In: Trace Metals and Metal-Organic Interaction in Natural Waters (P. C. Singer (ed.)), Ann Arbor Science, Publishers, Ann Arbor, Michigan, pp. 157–200.

    Google Scholar 

  • Morgan, G. B. and E. W. Bretthauer (1977). Metals in bioenvironmental systems. Anal. Chem. 49: 1210A–14A.

    Google Scholar 

  • Morgan, J. J. and T. H. Sibley (1975). Equilibrium speciation of trace metals. In: Proc. of Internat. Symposium on Heavy Metals in the Environment (T.C. Hutchinson (ed.)), 1, Toronto, pp. 319-38.

    Google Scholar 

  • Nguyen, V. D., P. Valenta and H. W. Nürnberg (1979). Voltametry in the analysis of atmospheric pollutants. Sci. Tot. Environ. 12: 151–67.

    Google Scholar 

  • Nichols, J. A., R. D. Jones and R. Woodruff (1978). Background reduction during direct atomisation of solid biological samples in atomic absorption spectrometry. Anal. Chem. 50: 2071–6.

    Google Scholar 

  • Nieboer, E. and D. H. S. Richardson (1980). The replacement of the nondescript term ‘heavy metal’ by a biologically and chemically significant classification of metal ions. Environ. Pollut. (Ser. B) 1: 3–26.

    Google Scholar 

  • Nielson, K. K. (1977). Matrix corrections for energy dispersive X-ray fluorescence analysis of environmental samples with coherent/incoherent scattered X-rays. Anal. Chem. 49: 641–8.

    Google Scholar 

  • Noller, B. N. and H. Bloom (1977). Micro fall-out of lead: A novel application of furnace atomic absorption spectrometry. Clean Air. 11: 69–72.

    Google Scholar 

  • Norvell, W. A. (1972). Equilibria of metal chelates in soil solution. In: Micronutrients in Agriculture (J.J. Mortvedt, P.M. Giordano and W. L. Lindsay (eds)), Soil Sci. Soc. Amer., Madison, Wisconsin, pp. 115–38.

    Google Scholar 

  • Nuernberg, H. W., P. Walenta, L. Mort, B. Raspar and L. Sipos (1976). Applications of polarography and voltametry to marine and aquatic chemistry. Z. Anal. Chem. 282:357–67.

    Google Scholar 

  • Oelschläger, W. and W. Lautenschläger (1977). Interferenzeinflüsse in der Graphitrohrkuvette am Beispeil der Bestimmung von Blei und Cadmium in Biologischen und anderen Materialen. Fresenius Z. Anal. Chem. 287:28–36.

    Google Scholar 

  • Ottaway, J. M. (1979). Developments in atomic-absorption and atomicfluorescence spectrometric techniques for biological materials. Proc. Anal. Div. Chem. Soc. 16: 64–7.

    Google Scholar 

  • Pakalns, P. and Y. J. Farrar (1977). The effect of surfactants on the extractionatomic absorption spectrophotometric determination of copper, iron, manganese, lead, nickel, zinc, cadmium and cobalt. Water Res. (UK). 11: 145–51.

    Google Scholar 

  • Pakalns, P., G. E. Batley and A. J. Cameron (1978). The effect of surfactants on the concentration of heavy metals from natural water on Chelex-100 resin. Anal. Chim. Acta. 99: 333–42.

    Google Scholar 

  • Panayappan, R., D. L. Venezky, J. V. Gilfrich and L. S. Birks (1978). Determination of soluble elements in water by X-ray fluorescence spectrometry after preconcentration with polyvinylpyrrolidone-thionalide. Anal. Chem. 50: 1125–6.

    Google Scholar 

  • Pandey, D. P. and S. Kannan (1979). Absorption and transport of iron in plants as influenced by the major elements. J. Plant Nutr. 1: 55–63.

    Google Scholar 

  • Pass, G. (1973). Ions in Solution. 3. Inorganic Properties. Oxford University Press, Oxford, 101pp.

    Google Scholar 

  • Pearson, R. G. (1963). Hard and soft acids and bases. J. Amer. Chem. Soc. 85: 3533–9.

    Google Scholar 

  • Pearson, R. G. (1968a). Hard and soft acids and bases HSAB, Part I. Fundamental principles. J. Chem. Ed. 45: 581–7.

    Google Scholar 

  • Pearson, R. G. (1968b). Hard and soft acids and bases HSAB, Part II. Underlying theories. J. Chem. Ed. 45: 643–8.

    Google Scholar 

  • Pearson, R. G. (1969). Hard and soft acids and bases. Surv. Prog. Chem. 5: 1–52.

    Google Scholar 

  • Peck, T. R. and S. W. Melsted (1967). Field sampling for soil testing. In: Soil Testing and Plant Analysis. SSSA Special Publication No. 2, Soil Science Society of America, Inc., Madison, Wisconsin, pp. 25–35.

    Google Scholar 

  • Perry, R. and R. J. Young (1977). Handbook of Air Pollution Analysis. Chapman and Hall Inc., London, 522 pp.

    Google Scholar 

  • Phillips, R. J. and J. S. Fritz (1978). Chromatography of metal ions with a thioglycolate chelating resin. Anal. Chem. 50: 1504–8.

    Google Scholar 

  • Phipps, D. A. (1976). Metals and Metabolism. Oxford University Press, Oxford. 122 pp.

    Google Scholar 

  • Poldoski. J. E. and G. E. Glass (1978). Anodic stripping voltametry at a mercury film electrode. Anal. Chim. Acta. 101: 79–88.

    Google Scholar 

  • Price, W. J. (1978). The atomic absorption analysis of microsamples. Chem. Britain. 14: 140–4.

    Google Scholar 

  • Price, W. J. (1979). New techniques of atomic absorption in clinical and biochemical analysis. Sci. Industry. 22 6.

    Google Scholar 

  • Puddephatt. R. J. (1972). The Periodic Table of the Elements. Oxford University Press. Oxford. 78 pp.

    Google Scholar 

  • Purcell. K. F. and J. C. Kotz (1977). Inorganic Chemistry. W. B. Saunders. Philadelphia. 1116 pp.

    Google Scholar 

  • Purdue. L. J., R. E. Enrione. R. J. Thompson and B. A. Bonfield (1973). Determination of organic and total lead in the atmosphere by atomic absorption spectrometry. Anal. Chem. 45: 527–30.

    Google Scholar 

  • Robinson. J. W., E. L. Kieser, J. Goodbread, R. Bliss and R. Marshall (1977). The development of a gas chromatography furnace atomic absorption combination for the determination of organic lead compounds. Anal. Chim. Acta. 92: 321–8.

    Google Scholar 

  • Rowe. C. J. and M. W. Routh (1977). Ultimate detection limit barrier in furnace AAS. Research-Development. 28: 24–30.

    Google Scholar 

  • Ryan, D. E., D. C. Stuart and A. Chattopadhay (1978). Rapid multielement neutron activation analysis with a SLOWPOKE reactor. Anal. Chim. Acta. 100: 87–93.

    Google Scholar 

  • Ryan. M. D. and D. D. Siemer (1977). Anodic stripping voltametry of atmospheric samples. Environmental Analysis, Academic, Press, New York, pp. 105–10.

    Google Scholar 

  • Salin, E. D. and J. D. Ingle (1978). Performance of a time multiplex multiple slit multielement flame atomic absorption spectrometer. Anal. Chem. 50: 1745–52.

    Google Scholar 

  • Sawicki, C. R. (1975). Sampling and analysis of the various forms of atmospheric lead. Report of US Environmental Protection Agency EDA-650/2-75-003, Springfield, N.T.I.S., 19pp.

    Google Scholar 

  • Schieffer, G. W. and W. T. Blaedel (1977). Study of anodic stripping voltametry with collection at tubular electrodes. Anal. Chem. 49: 49–53.

    Google Scholar 

  • Schutyser, P., W. Maenhaut and R. Dams (1978). Instrumental neutron activation analysis of dry atmospheric fall-out and rain-water. Anal. Chim. Acta. 100: 75–85.

    Google Scholar 

  • Shuman, M. S. and J. H. Dempsey (1977). Column chromatography for the field pre-concentration of trace metals. J. Wat. Pollut. Contr. Fed. 49: 2000–6.

    Google Scholar 

  • Siemer, D. D. (1978). Analysis of trace metals in the air. Environ. Sci. Technol. 12: 539–43.

    Google Scholar 

  • Skogerboe, R. K. (1974). Monitoring trace metal particulates: An evaluation of the sampling and analysis problems. In: Instrumentation for Monitoring Air Quality, ASTM STP 555, American Society for Testing and Materials, Philadelphia, pp. 125–36.

    Google Scholar 

  • Smet, T., J. Hertogen, G. J. Bels and J. Moste (1978). A group separation scheme for neutron activation analysis for 24 elements in rocks and minerals. Anal. Chim. Acta. 101:45–62.

    Google Scholar 

  • Snyder, L. J. and S. R. Henderson (1962). A new field method for the determination of organolead compounds in air. Anal. Chem. 33: 1175–2113.

    Google Scholar 

  • Snyder, S. G. (1977). Development of a simplified analytical procedure for the extraction and analysis of heavy metals from airborne particulate matter. J. Environ. Sci. Health. A12: 157–72.

    Google Scholar 

  • Sposito, G. and F. T. Bingham (1981). Computer modelling of trace metal speciation in soil solutions. Correlations with trace metal uptake by higher plants. Proceedings of symposium on trace element stress in plants, U.C.L.A. J. Plant Nutr. 3: 35–49.

    Google Scholar 

  • Strelow, F. W. E. (1978). Improved separation of cadmium from indium, zinc, gallium and other elements by anion-exchange chromatography in hydrobromic-nitric acid mixtures. Anal. Chim. Acta. 100:577–88.

    Google Scholar 

  • Sturgeon, R. E. and C. L. Chakrabarti (1977). Mechanism of atom loss in graphite furnace atomic absorption spectrometry. Anal. Chem. 49: 1100–6.

    Google Scholar 

  • Subramanian, K. S., C. L. Chakrabarti, J. E. Sueiras and I. S. Maines (1978). Preservation of some natural trace metals in samples of natural waters. Anal. Chem. 50:444–8.

    Google Scholar 

  • Sugimae, A. and R. Skogerboe (1978). Dual approach to the emission spectrographic determination of elements in airborne particulate matter. Anal. Chim. Acta. 97: 1–11.

    Google Scholar 

  • Sutcliffe, J. F. and D. A. Baker (1974). Plants and Mineral Salts. Edward Arnold, London, 60 pp.

    Google Scholar 

  • Sychra, V., D. Kolihova, O. Vyskovilova, R. Hlavac and P. Pueschel (1979). Electrothermal atomisation from metallic surfaces. Part I. Design and performance of a tungsten-tube atomiser. Anal. Chim. Acta. 105:263–70.

    Google Scholar 

  • Tan, K. T. and N. W. Lepp (1977). Roadside vegetation: An efficient barrier to the lateral spread of atmospheric lead1? Arboricultural J. 3: 79–85.

    Google Scholar 

  • Thomassen, Y., R. Solberg and J. E. Hanssen (1977). Atomic absorption spectrometric determination of metals in particulate matter in air by the direct atomisation technique. Anal. Chim. Acta. 90: 279–82.

    Google Scholar 

  • Thompson, K. C., K. Wagstaff and K. C. Wheatstone (1977). Method for the minimisation of matrix interferences in the determination of lead and cadmium in non-saline waters by atomic absorption spectrophotometry using electrothermal atomisation. Analyst. 102: 310–13.

    Google Scholar 

  • Truesdale, A. H. and B. F. Jones (1974). WATEQ, a computer program for calculating chemical equilibria of natural waters. J. Res. U.S. Geol. Surv. 2: 233–48.

    Google Scholar 

  • Ure, A. M. and J. R. Bacon (1978). Comprehensive analysis of soils and rocks by spark-source mass spectrometry. Analyst. 103: 807–22.

    Google Scholar 

  • Uthe, J. F., F. Armstrong and K. C. Tarn (1971). Determination of trace amounts of mercury in fish tissues, results of a North American check sample survey. J. Ass. Offic. Anal. Chem. 54: 866–9.

    Google Scholar 

  • Van Espen, P., H. Nullens and F. C. Adams (1977). Automated energy dispersive X-ray fluorescence analysis of environmental samples. Z. Anal. Chem. 285: 215–25.

    Google Scholar 

  • Van Loon, J. C. (1975). How useful are environmental chemical data? In: Proc. Internat. Conf. on Heavy Metals in the Environment (T. C. Hutchinson (ed)), 1, pp. 349-56.

    Google Scholar 

  • Van Loon, J. C. and B. Radziuk (1977a). Applications of the flame resonance spectrometer to the analysis of biological and environmental samples. In: Environmental analysis (G.W. Ewing (ed.)). Academic Press, New York, pp.47–56.

    Google Scholar 

  • Van Loon. J. C. and B. Radziuk (1977b). Evaluation of the non-dispersive atomic fluorescence detector for chromatography. In: Environmental Analysis (G. W. Ewing (ed.)). Academic Press, New York, pp. 227–34.

    Google Scholar 

  • Viets. F. G. (1962). Chemistry and availability of soil cations. J. Agr. Food Chem. 10:174.

    Google Scholar 

  • Wagner, H. (1977). Investigation of inorganic substances and heavy metals in water. Muench. Beitr. Abwasser. Fisch. Flussbiol. 27: 125–36.

    Google Scholar 

  • Wainerdi, R. E. R. Zeister and E. A. Schweikert (1977). Activation analysis opportunities using a 5. 1012to 5. 1013n/sec 14 MeV generator. J. Radioanal. Chem. 37: 307–12.

    Google Scholar 

  • Wallace. A., E. M. Romney and J. Kinnear (1977). Frequency distribution of several trace metals in 72 corn plants grown together in contaminated soil in a glasshouse. Commun. Soil Sci. Plant Anal. 8: 693–7.

    Google Scholar 

  • Wang, J. and M. Ariel (1978). The rotating disc electrode in flowing systems. Anal. Chim. Acta. 101: 1–8.

    Google Scholar 

  • Ward, A. F. and H. R. Sobel (1977). Trace element analysis of environmental and biological samples using inductively coupled argon plasma optical emission spectroscopy. In: Environmental Analysis (G. W. Ewing (ed.)), Academic Press, New York, pp. 245–52.

    Google Scholar 

  • Welch, K. M. and A. M. Ure (1980). Concentration procedures for trace element analysis by spark source mass spectrometry. Anal. Proc. (Chem. Soc.) 17: 8–13.

    Google Scholar 

  • Wesolowski, J. J., W. John and R. Kaifer (1973). Lead source identification by multi-element analysis of diurnal samples of ambient air. In: Trace Elements in the Environment (E. L. Kothny (ed.)), Advances in Chemistry Series 123, American Chemical Society, Washington D.C., pp. 1–16.

    Google Scholar 

  • West, T. S. (1969). Complexometry with EDTA and related reagents (3rd Ed.), B.D.H. Chemicals Ltd, Pooled Dorset, 213pp.

    Google Scholar 

  • Williams, D. R. (1971). The Metals of Life. Van Nostrand Reinhold, London, 172 pp.

    Google Scholar 

  • Willis, J. B. (1975). Atomic spectroscopy in environmental studies fact and artefact. In: Proc. Internat. Conf. on Heavy Metals in the Environment (T.C. Hutchinson (ed.)), 1, Toronto, pp. 69-92.

    Google Scholar 

  • Willis, J. B. (1979). Analytical atomic spectroscopy at the CSIRO division of chemical physics. Anal. Chim. Acta. 106: 175–205.

    Google Scholar 

  • Wilson, D. L. (1979). Separation and concentration techniques for atomic absorption: A guide to the literature. Atomic Absorption Newsletter. 18: 13–17.

    Google Scholar 

  • Zander, A. T. and G. M. Hieftje (1978). Determination of trace metals by microwave plasma spectrometry with an atmospheric pressure helium. Anal. Chem. 50: 1257–60.

    Google Scholar 

  • Zikovsky, L. and E. A. Schweiker (1977). Comparison of non-destructive proton and neutron activation: The case of biological samples. J. Radioanal. Chem. 37: 571–80.

    Google Scholar 

  • Zoller, W. H., G. E. Gordon, E. S. Gladney and A. G. Jones (1973). The sources and distribution of vanadium in the atmosphere. In: Trace Elements in the Environment (E.L. Kothny (ed.)), Advances in Chemistry Series 123, American Chemical Society, Washington, D.C., pp. 31–47.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Applied Science Publishers Ltd

About this chapter

Cite this chapter

Phipps, D.A. (1981). Chemistry and Biochemistry of Trace Metals in Biological Systems. In: Lepp, N.W. (eds) Effect of Heavy Metal Pollution on Plants. Pollution Monitoring Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-7339-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-7339-1_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-7341-4

  • Online ISBN: 978-94-011-7339-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics