Skip to main content

The Morphological Continuum in Solid Propellant Grain Design

  • Conference paper
Space Engineering

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 15))

  • 362 Accesses

Abstract

Grain configurations for solid propellant rockets are classified by relative web thickness and mean vector direction of burning surface into a topological continuum. This ranges from the thin web dendrite (web equal to 1/6 of charge radius and entirely in the cross-section plane) thru the wagon-wheel- and star-perforated grains (1/4 to 1/2 web range and partial use of end effects in burning surface area control) to the slotted, conocyl, and finocyl grains (web 0.6–0.8 of radius and burning front partially in the axial direction). These geometrical principles relate to the mission by the ratio of thrust-to-duration squared (F/t 2) which requires a dendrite grain for F/t 2≈ 3000 1bf/sec2 and a slot or finocyl for F/t 2≈ 30 1bf/sec2. This effect is counterbalanced by the range of burning rates available. Burning rate, relative web thickness, chamber pressure, length-to-diameter ratio, and volumetric loading affect F/t 2 attainable in a descending significance. The prevailing style of grain design in any era, although optimized mathematically within itself, depends more on technological breakthroughs in materials and propellant properties, than on factors of ballistic performance. Grain design is primarily a graphic subject. There are two aspects: performance attributes and description of the grain configuration.

Prepared for the NASA Design Criteria Monograph program under Contract NAS3-11179.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, S. E., ‘Ballistic Scale-Up of NF Propellants; I. 80-lbm Motor Demonstration Firing (U)’, Rohm and Haas, Huntsville, Report no. S-94, 17 March 1966.

    Google Scholar 

  2. Bacon, W. S. and Braun, J. V., ‘High Mass Ratio by the Use of Multiple Propellant Grains’, Bull. of the 15th Meeting of the JANAF Solid Propellant Group, Vol. I, June 1959, pp. 165–192 (*0127, #0925)

    Google Scholar 

  3. Badrick, C. M. and Vernon, J. H. C., ‘Small Rocket Motors for Ballistic Assessment: The Geometry of the Cone and Cylinder Charge’, Explosives Research and Development Establishment, Tech Memo No. 9/M/58, December 1958. (*0024)

    Google Scholar 

  4. Barrere, M., Jaumotte, A., Fraeys de Veubeke, B., and Vandenkerckhove, J., Rocket Propulsion, Elsevier Publ. Co., Amsterdam, 1959;

    Google Scholar 

  5. Ibid., La propulsion par fusées, Dunod, Paris, 1957.

    Google Scholar 

  6. Bartley, C. E. and Mills, M. M., ‘Solid Propellant Rockets’, in Jet Propulsion Engines (ed. by O. E. Lancaster), Princeton University Press, 1958, pp. 521–624. (#0004)

    Google Scholar 

  7. Billheimer, J. S., ‘Case Bonded Grain Design for High Loading, Long Duration Solid Propellant Motor’, Bull, of the 15th JANAF Solid Propellant Group, Vol. I, June 1959, pp. 231–245. (*0129)

    Google Scholar 

  8. Billheimer, J. S., ‘Optimization and Design Simulation in Solid Rocket Design’, ICRPG/AIAA 3rd Solid Propulsion Conference, Atlantic City, June 4–6, 1968, AIAA preprint 68–488.

    Google Scholar 

  9. Billheimer, J. S., ‘Use of the Computer in Direct Grain Design for Erosive Burning, Sliver, Neutrality, and Tail-Off Considerations’, Bull, of the 16th Meeting of the JANAF Solid Propellant Group, Vol. V, June 1960, pp. 211–252. (*0042, #0594)

    Google Scholar 

  10. Billheimer, J. S., and Wiegand, J. H., ‘Integrated Solid Rocket Design Procedure Utilizing Computers’, Bull, of the Interagency Solid Propulsion Meeting, Seattle, Vol. III, July 1963, pp. 11–36.

    Google Scholar 

  11. Clautice, A. W., ‘A Study of Loading of Cylindrical Shape Grains’, Ballistics Research Laboratory, Memorandum Report No. 783, May 1954. (*0018)

    Google Scholar 

  12. Crooks, J. R., ‘Skybolt Propulsion System’, Bull, of the 18th Meeting of the JANAF-ARPA-NASA Solid Propellant Group, Vol. 1, 5–7 June 1962, pp. 113–123. (#1044)

    Google Scholar 

  13. Davis, L. Jr. and Mills, C. D., Jr., ‘Dependence of the Mass of Propellant in a Rocket Motor on the Web Thickness and Motor Dimensions’, OSRD-1319, A63, cit/jac4, March 1943. (*0108)

    Google Scholar 

  14. Dudley, D. P., Veit, P. W., and Billheimer, J. S., ‘The Man-Computer Link in Solid-Propellant Rocket Preliminary Design and Optimization’, ICRPG/AIAA 3rd Solid Propulsion Conference Atlantic City, June 4–6, 1968, AIAA preprint 68–489.

    Google Scholar 

  15. Durelli, A. J., ‘Investigation of Distribution of Stresses in Propellant Grains’, Armour Research Foundation, Report Numbers 1–7, 13 September 1953. (*0098)

    Google Scholar 

  16. Durelli, A. J., Report Numbers 8–14, 4 January 1954. (*0091)

    Google Scholar 

  17. Durelli, A. J., Final Report of 26 May 1954. (*0089)

    Google Scholar 

  18. Epstein, L. I., ‘The Design of Cylindrical Propellant Grains’, Jet Propulsion 26, No. 9, 757–759. (*0123, #0987

    Google Scholar 

  19. Fey, R. S., Angelus, T. A., Sherman, J. N., and Skurzynski, E., ‘New Principles of Propellant Grain Design’, Bull, of the 12th Meeting of the J ANAF Solid Propellant Group, May 1956, pp. 175–190. (*0133)

    Google Scholar 

  20. Fourney, M. E. and Parmerter, R. R., ‘Parametric Study of Rocket Grain Configurations by Photoelastic Analysis’, Mathematical Science Corp., Seattle, Report No. 65–29-12, AFRPL-TR-66–52 (Mar. 66), Contract AF 04(611)-10529, 113 pp.

    Google Scholar 

  21. Gale, H. W., ‘Report on the Working Group for Design Automation’, Bull, of the Interagency Solid Propulsion Meeting, July 1963, Seattle, Vol. III, pp. 1–10.

    Google Scholar 

  22. Grand, H. R. and Barney, J. D., ‘Dual Thrust Solid Propellant Rocket’, Bull, of the 9th Meeting of the J AN AF Solid Propellant Group, May 1953, pp. 95–106. (*0135)

    Google Scholar 

  23. Geckler, R. D., Noland, R. L., Roberts, E. R., and Rogers, W. L., ‘Internal Burning Grains and Related Components for Solid-Propellant Rocket Motors,’ Aerojet Report 445 (Final), 23 June 1950, 252 pp. (U)

    Google Scholar 

  24. Godai, Tomifumi, ‘Grain Configuration and Length-Diameter Ratio of Solid Propellant Rockets’, First Symposium (International) on Rockets and Astronautics, Tokyo, 1959, pp. 87–93.

    Google Scholar 

  25. Gustavson, John, ‘Small Sounding Rocket Propulsion Systems’, XIth International Astronautical Congress, Stockholm, 1960, Springer-Verlag, 1961, pp. 53–62.

    Google Scholar 

  26. Hayes, T. J., Elements of Ordnance, John Wiley and Sons, N.Y., 1958, p. 11.

    Google Scholar 

  27. Hunt, F. R. W. (ed.), Internal Ballistics, Ministry of Supply, His Majesty’s Stationery Office, London, 1951, Chapter IV, ‘The Form Function’, pp. 40–52.

    Google Scholar 

  28. Kakimi, Tsuneo, ‘On the Optimum Design of Three-Stage Solid Propellant Rockets with Special Reference to Their First-Stage’, First Symposium (International) on Rockets and Astronautics, Tokyo, 1959, pp. 94–106.

    Google Scholar 

  29. Kaskey, B., Grain Design Handbook, Report 3413, Rocket Development Laboratory, Ordnance Missile Laboratory, Redstone Arsenal, 8 June 1956.

    Google Scholar 

  30. Kelley, B., McClure, R. T., and Rosser, J. B., ‘A Less Regressive Design for Powder Grains’, OSRD-2069, A75M, November 1943. (*0107)

    Google Scholar 

  31. Kershner, R. B., ‘Interior Ballistics of Rockets’, in Rocket Fundamentals, OSRD, George Washington University, 1954, Chap. 3, pp. 39–68.

    Google Scholar 

  32. Lumpkin, H. K., Mathematical Approach to Solid Propellant Grain Design, Army Rocket and Guided Missile Agency, Ordnance Missile Laboratories Division, ARGMA TN 1G5N, 21 December 1959.

    Google Scholar 

  33. Manfred, R. K., Wilkes, B. F., and Brown, J. M., ‘Design and Development of Solid-Rocket Combustible Mandrels (U)’, Aerojet-General Corp., Sacramento, Rept. 0630–81Q-2 and 0630–81Q-3 (16 May–15 Nov. 1962), Conf. (#0758)

    Google Scholar 

  34. Miele, Angelo, ‘Optimum Burning Program as Related to Aerodynamic Heating for a Missile Traversing the Earth’s Atmosphere’, VIIIth International Astronautical Congress, Barcelona, 1957, pp 257–277.

    Google Scholar 

  35. Miller, E., ‘Erosive Burning of Composite Solid Propellants’, Combustion and Flame 10 (December 1966) 330–336. (#0375)

    Article  Google Scholar 

  36. Morey, L. E., ‘Dual Propellant Grain Configurations’, Bull, of the 13th Meeting of the JANAF Solid Propellant Group, June 1957, pp. 829–839. (*0136)

    Google Scholar 

  37. Nead, D. M., ‘Normalized Equations for Rocket Motor Design’, Bull, of the 12th Meeting of the JANAF Solid Propellant Group, May 1956, pp 131–143. (*0132)

    Google Scholar 

  38. Nicholson, A. H. and Wilsten, D. B., ‘Derivation of the Surface Integral and Neutrality Control Function for the Axially Tapered Internal-Burning Star Solid Propellant Charge’, Aerojet-General Report No. 1785/89–2, Appendix A, 15 November 1956.

    Google Scholar 

  39. Ordahl, D. D. and Williams, M. L., ‘Preliminary Photoelastic Design Data for Stresses in Rocket Grains’, Jet Propulsion (June 1957). (*0016, #0805)

    Google Scholar 

  40. Orlov, B. V., and Mazing, G. Yu., ‘Thermodynamic and Ballistic Design Fundamentals of Solid-Propellant Rocket Engines’, Translated by Foreign Technology Div., AFSC-RTD-65–191 (16 June 1966), AD 645 793, pp 124–129,

    Google Scholar 

  41. Penner, S.S., The Role of Combustion Research in Rocket Propulsion’, XIIth Congress of the International Astronautical Federation, Washington, D.C., 1961.

    Google Scholar 

  42. Piasecki, L., and Robillard, G., ‘Generalized Design Equations for an Internal Burning Star-Configuration Solid Propellant Charge and Method of Calculating Pressure Time and Thrust Relationships’, Jet Propulsion Laboratory, Memorandum No. 20–135, September 18, 1956. (*0021, #0900)

    Google Scholar 

  43. Podell, H. L., The Practical Application of a Bi-Propellant Grain System in Large Solid Rocket Engines’, Bull, of the 16th Meeting of the J ANAF Solid Propellant Group, Vol. II, June 1960. (*0038, #0922)

    Google Scholar 

  44. Poole, H. J., unpublished reports of the British Ministry of Supply, 1937–1940.

    Google Scholar 

  45. Ritchey, H. W., Thrust Programming of Solid Propellant Boosters by Choice of Propellant Configuration and Composition’, Jet Propulsion, 25, No. 10 (Oct. 1955).

    Google Scholar 

  46. Rogers, K. H., ‘Mathematical Design of a Sliverless Rocket Engine’, ARS Solid Propellant Rocket Conference, Salt Lake City, Feb. 1–3, 1961, ARS preprint 1616–61.

    Google Scholar 

  47. Rossini, R. A., Billheimer, J. S., and Threewit, T. R., ‘Configuration Efficiency: a New Measure of Ballistic Quality for a Grain Design’, ARS J.(Dec. 1961) 1761–1766; ARS Solid Propellant Rocket Conference, Salt Lake City, Feb. 1–3, 1961.

    Google Scholar 

  48. Rossini, R. A., and Threewit, T. R., ‘An Automatic Design — Selection and Optimization Program for Solid-Rocket Systems’, Bull, of the Interagency Solid Propulsion Meeting, July 1963, Seattle, Vol. III, pp. 37–59.

    Google Scholar 

  49. Shafer, J. I., ‘Solid Rocket Propulsion’, Chapter 16 in Space Technology (ed. by Howard S. Seifert), John Wiley and Sons, N.Y., 1959, pp. 16–04 to 16–09.

    Google Scholar 

  50. Shapiro, Ya. M., Mazing, G. Yu., Prudnikov, N. E,, Teorya raketnogo dvigatelya na tverdom toplive [Theory of Solid Fuel Rocket Motors], Boennoe Izdatel’stvo, Ministerstva Oboroni, SSSR, Moscow, 1966.

    Google Scholar 

  51. Sokol’skii, V. N., Russian Solid Fuel Rockets, Acad. Sciences USSR, Inst. History of Science and Engineering. Translated from Russian by S. G. Kozlov, Israel Program for Scientific Translations, Jerusalem, 1967.

    Google Scholar 

  52. Steinz, J. A., Stang, P. L., and Summerfield, M., The Burning Mechanism of Ammonium Perchlorate-Based Composite Solid Propellants’, AIAA 4th Propulsion Joint Specialist Conference, Cleveland, June 10–14, 1968, AIAA preprint 38–658, 23 pp.

    Google Scholar 

  53. Stone, M. W., ‘Slotted Tube Grain Design and Some Practical Modifications and Use by Grain Designers’, ARS J.(Jan 1960), 1055–1060. (*0111)

    Google Scholar 

  54. Ibid., A Practical Mathematical Approach to Grain Design’, Jet Propulsion 28, No. 4 (April 1958). (*0017, #0906)

    Google Scholar 

  55. Struble, R. A., and Black, H. D., ‘A Generalized Closed Form for Burnt Velocity and the Effect of Drag on Rocket Design’, Bull. of the 12th Meeting of the JANAF Solid Propellant Group, Vol. II, White Oak, 7–9 May 1956, pp. 145–64 (U).

    Google Scholar 

  56. Thackwell, H. L., Jr., The Application of Solid Propellants to Space Flight Vehicles’, Xth International Astronautical Congress, London, 1959, Springer-Verlag, 1960, pp. 155–170.

    Google Scholar 

  57. Vandenkerckhove, J. A., ‘Internal Burning Star and Wagon-Wheel Designs for Solid Propellant Grains’, Université libre de Bruxelles, USAF-ARDC Contract S61(052)58–13, 1958.

    Google Scholar 

  58. Vandenkerckhove, J. A., ‘Note on the Optimum Design of Solid Propellant Power-Plants for Missiles Systems Engineering’, IXth International Astronautical Congress, Amsterdam, 1958, Springer-Verlag, 1959, pp. 149–167.

    Google Scholar 

  59. Vandenkerckhove, J. A., ‘Recent Advances in Solid Propellant Grain Design’, ARS J.(July 1959) 483–491.

    Google Scholar 

  60. Vellacott, R. J., ‘Design Study of Solid Propellant Configurations’, Thiokol Chemical Corp., Redstone Div., Huntsville, Final Rept. 28–61, U-A-61–28A, 299 pp. (28 July 1961), Conf.

    Google Scholar 

  61. Vellacott, R. J., ‘A Computer Program for Solid Propellant Rocket Motor Design and Ballistic Analysis’, ARS preprint 2315–62 (1962).

    Google Scholar 

  62. Vogel, J. M., ‘A Quasi Morphological Approach to the Geometry of Charges for Solid Propellant Rockets’, Jet Propulsion 26, No. 2 (Feb. 1956).

    Google Scholar 

  63. Wall, R. W., ‘Designing Solid Propellant Rocket Engines for Optimum Ballistic Performance by Use of Graphical Solutions’, Bull, of the 12th Meeting of the JANAF Solid Propellant Group, May 1956, pp 111–129. (*0131)

    Google Scholar 

  64. Warren, F. A., ‘A Survey of Properties of Solid Propellants for Gas Generator Applications (U)’, Bull of the 20th Interagency Solid Propulsion Meeting, Vol. IV, July 1964, pp. 291–310. (#0116)

    Google Scholar 

  65. Wheeler, W. H., ‘Rocket Development’, Nature, 158 (Oct 5, 1946) 464–469.

    Article  ADS  Google Scholar 

  66. Whetstone, A. E., Threewit, T. R., and Billheimer, J. S., ‘Basic Grain Design and the 564 Interior Ballistics Computer Program’, Aerojet-General Corp., Sacramento, STM-143, 10 June 1961, Contract DA-04–200-506-ORD-1120, 142 pp.

    Google Scholar 

  67. Whetstone, A. E., Threewit, T. R., and Rossini, R. A., ‘Intermediate Grain Design and the ACP 564B Interior Ballistics Computer Program, Aerojet-General Corp., Sacramento, STM-148, 20 Feb. 1962, Contract AF 04(611)-6358, 72 pp.

    Google Scholar 

  68. Aerojet-General Corporation, Azusa, ‘Development of Solid Propellant Rocket Engines for Long Range Missiles’, Report No. 1785–89-1, 17 Aug. 1956. (*0076)

    Google Scholar 

  69. Aerojet-General Corporation, Azusa, ‘Development of Solid Propellant Rocket Engines for Long-Range Missiles’, Report No. 1785/89–2, 15 Nov. 1956. (*0101)

    Google Scholar 

  70. Aerojet-General Corporation, Azusa, ‘Investigation of Internal Burning Grain Configuration’, PR No. 5–985/710, 985/711, 3 Jun 1959. (*0105)

    Google Scholar 

  71. Aerojet-General Corporation, Azusa, ‘Research and Development of Large High Performance Solid Propellant Rocket Engine’, QPR No. 1314–1, Jan. 1957. (*0060)

    Google Scholar 

  72. Aerojet-General Corporation, Azusa, ‘Research and Development of Solid Propellants for large High Performance Rockets,’ QPR No. 1314–3, July 1957. (*0068)

    Google Scholar 

  73. Aerojet-General Corporation, Sacramento, ‘Development of Dual Thrust Rocket Motors for the Hawk Missile’, Report No. 1914-Q-II, 15 Aug. 1959. (*0034)

    Google Scholar 

  74. Aerojet-General Corporation, Sacramento, ‘Development of Large Solid Propellant Rocket Motors’, Report No. 0162–01M-3, 20 Nov. 1958. (*0074)

    Google Scholar 

  75. Aerojet-General Corporation, Sacramento, ‘Final Development and Prequalification Report: 1.5-KS-12000 Solid Propellant Motor’, Report 0139–01-1 through 8, 10 Nov. 1958. (*0057)

    Google Scholar 

  76. Aerojet-General Corporation, Sacramento, ‘Large Solid Rocket Motor Program, TW-1 Motor Firing Report’, Report No. 0434–0158-T3 (8 Aug 1961) and ‘\h. 100FW-1 Motor Firing Report’, Report No. 0434–01S11-T4 (16 Oct. 1961).

    Google Scholar 

  77. Allegany Ballistics Laboratory, ‘Status of Development Project’, ABL-QPR 10, 15 Feb. 1959. (*0069)

    Google Scholar 

  78. American Rocket Society, Solid Rocket Symposium, Waco, Texas, 1962, ‘Solid Rocket Optimization Session’, ARS preprints 62–2315 to 2319.

    Google Scholar 

  79. Astrodyne, Inc., ‘Development and Qualification of High Performance Case-Bonded, Solid Propellant Rocket Motors, Report No. 760–1-59, 2KS-10, 650 (1 Apr. –30 June 1959). (*0028)

    Google Scholar 

  80. Astrodyne, Inc., ‘Development of Composite Propellant Booster Unit’, Report 726–1-58. (*0053)

    Google Scholar 

  81. California Institute of Technology, ‘Fundamentals of Solid Propellant Rockets’, Chapter VII in Jet Propulsion, prep, for the Air Technical Service Command, 1946, pp. 169–171.

    Google Scholar 

  82. Canadian Armament Research and Development Establishment, ‘Design of Conical Conduit Bi and Tri-Propellant Charges’, CARDE Tech Memo 237/59, May 1959. (*0035)

    Google Scholar 

  83. Explosive Research and Development Establishment, ‘Progressive Charges with Constant Thrust: Concentric Cylinder and Double Cone Types’, Tech Memo No. 6/M/55, Oct. 1955. (*0083)

    Google Scholar 

  84. Grand Central Rocket Company, ‘Development of a Propulsion System for the Nike Zeus Missile’, Report 1, Jan.–Dec. 1956. (*0064)

    Google Scholar 

  85. Hercules Powder Co., Chemical Propulsion Div., Bacchus, ‘Minuteman Stage III, Weapon System 133-A (U)’, QPR MCS-51 (Apr.–June 1960), Conf. [85] Jet Propulsion Laboratory, ‘Development of Composite Propellants in Rocket Motors’, Research Summary No. 5, 15 Oct. 1959. (*0031)

    Google Scholar 

  86. Jet Propulsion Laboratory, ‘Dual Propellant Design Studies’, CBS No. 53, 15 Jun 1956. (*0046)

    Google Scholar 

  87. Lockheed Propulsion Co., Redlands, ‘156-Inch Diameter Motor Liquid Injection TVC Program (U)’, QPR 1 (30 June 65), 699-Q-l, RPL-TR-65–148, and QPR 2 (3 Sep. 65), LPC 699-Q-2, RPL-TR-65–212, Conf. (#1090)

    Google Scholar 

  88. National Advisory Committee for Aeronautics, ‘Analytical and Experimental Studies of Spherical Solid Propellant Rocket Motors’, RML 57G12A, 16 Aug. 1957. (*0066)

    Google Scholar 

  89. National Aeronautics and Space Administration, Washington, D.C., ‘Feasibility Demonstration of Large Solid-Propellant Motors (U)\ Nov. 1962, 70 pp., Conf. (#0980)

    Google Scholar 

  90. Naval Ordnance Test Station, ‘Solid Propellant Progress’, Tech Program Report 201, 10 Nov. 1957, NOTS 1880. (*0051)

    Google Scholar 

  91. Naval Powder Plant, Indian Head, ‘Form Functions for Use in Interior Ballistics and Closed Chamber Calculations’, Memo Report No. 3, 15 Feb. 1951. (*0099)

    Google Scholar 

  92. Rohm and Haas Co., Redstone Div., ‘Quarterly Progress Report on Interior Ballistics’, 10 May 1954. (*0085)

    Google Scholar 

  93. Rohm and Haas Co., Redstone Div., Report No. P-55–7, 10 May 1955. (*0079)

    Google Scholar 

  94. Rohm and Haas Co., Redstone Div., Report No. P-55–15, 10 Aug. 1955. (*0081)

    Google Scholar 

  95. Rohm and Haas Co., Redstone Div., Report No. P-56–1, 10 Feb. 1956. (*0043)

    Google Scholar 

  96. Rohm and Haas Co., Redstone Div., Report No. P-59–7, Jan. 1959–Apr. 1959. (*0008)

    Google Scholar 

  97. Rohm and Haas Co., Redstone Div., Report No. P-59–13, 14 Apr. 1960. (*0119)

    Google Scholar 

  98. Rohm and Haas Co., Redstone Div., Report No. 59–19, July 1959–Oct. 1959. (*0010)

    Google Scholar 

  99. Rohm and Haas Co., Redstone Div., ‘Use a New Propellant Composition in the Pershing Missile’, Report No. S-23, 29 Dec. 1959. (*0004)

    Google Scholar 

  100. Thiokol Chemical Corp., Redstone Div., Hunts ville, ‘Pershing Propulsion System Development Program (U)’, Progress Repts. C-A-62–101A, -116A, -142A (21 Nov. 1961–20 Feb. 1962), Conf. (#1020)

    Google Scholar 

  101. Thiokol Chemical Corp., Wasatch Div., Brigham City, ‘Minuteman Development of Large, High Performance Solid Propellant Rocket Engines’, QPR No. 1, AF 33(600)-36514, 24 Feb–31 May 1958. (*0030)

    Google Scholar 

  102. Thiokol Chemical Corp., Wasatch Div., Brigham City, ‘XM-38 Solid Propellant Rocket Motor, Vol. II: SN-73 (Goose) Guided Missile (weapon System 123A)’, TU-68–5-59, June 1959.(*0029)

    Google Scholar 

  103. Thiokol Chemical Corp., Wasatch Div., Brigham City, ‘156 Inch Fiberglass LITVC Motor Program (U)’, AFRPL-TR-65–192, Vol. I and II, QPR 1 (15 May–30 Aug. 1965), and AFRPL-TR-66–19, (Vol. I and II, QPR 2 (Sep.–Nov. 1965), Conf. (#1091)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1970 D. Reidel Publishing Company, Dordrecht, Holland

About this paper

Cite this paper

Billheimer, J.S., Wagner, F.R. (1970). The Morphological Continuum in Solid Propellant Grain Design. In: Partel, G.A. (eds) Space Engineering. Astrophysics and Space Science Library, vol 15. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-7551-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-7551-7_28

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-7553-1

  • Online ISBN: 978-94-011-7551-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics