Skip to main content

Efficient Creation of Transgenic Sheep: The Challenge for the Cell Biologist

  • Chapter
The Biology of Wool and Hair
  • 123 Accesses

Summary

Transgenic sheep are now being created in several centres throughout the world using microinjection of the transgene into the pronuclei of one cell zygotes to establish germ line transmission. Of the lambs born, about 8% are transgenic, a success rate which is comparable to the 15–35% success achieved with mice and pigs. However, this simple comparison fails to adequately highlight the considerable extra effort and cost required to create transgenic sheep through limitations such as the low reproductive capacity of this species. Low embryo numbers preclude adoption of many techniques for DNA transfer widely used for somatic cells. These constraints could be largely overcome if methods for the establishment of totipotent embryonic cell lines and methods to allow recreation of viable embryos from selected genetically transformed embryonic cells could be established. This approach is feasible as has been recently demonstrated in mice and there is a clear challenge to the cell biologist to establish similar technology for the sheep.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Biery, K.A., Bondioli, K.R. & De Mayo, F J. (1988) Theriogenology 29, 224

    Article  Google Scholar 

  • Bradley, A., Evans, M., Kaufman, M.H. & Robertson, E. (1984) Nature (London) 309, 255–256

    Article  Google Scholar 

  • Brem, G., Brenig, B., Goodman, H.M., Seiden, R.C., Graf, F., Kruft, B., Springman, K., Meyer, J., Winnacker, E.C. & Krausslich, H. (1986) Theriogenology 25, 143

    Article  Google Scholar 

  • Brinster, R.L., Chen, H.Y., Trumbauer, M.E., Yagle, M.K, & Palmiter, R.D. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 4438–4442

    Article  Google Scholar 

  • Celis, J.E. (1984) Biochem. J. 223, 281–291

    Google Scholar 

  • Cheng, W.T.K., Moor, R.M. & Polge, C. (1986) Theriogenology 25, 146

    Article  Google Scholar 

  • Desrosiers, R.C., Kamine, J., Bakker, A, Silva, D., Woychik, R.P., Sakari, D.D. & Rottman, F.M. (1985) Mol. Cell. Biol. 5, 2795–2803

    Google Scholar 

  • Doetschman, T., Gregg, R.G., Maeda, N., Hooper, M.L., Melton, D.W., Thompson, S. & Smithies, O. (1987) Nature (London) 330, 576–578

    Article  Google Scholar 

  • Evans, M.J. & Kaufman, M.H. (1981) Nature (London) 292, 154–156

    Article  Google Scholar 

  • Fehilly, C.B., Willadsen, S.M. & Tucker, E.M. (1984) J. Reprod. Fertil. 70, 347–351

    Article  Google Scholar 

  • Gardner, R.L. (1968) Nature (London) 220, 596–597

    Article  Google Scholar 

  • Gardner, R.L., Papaioannou, V.F. & Barton, S.G. (1973) J. Embryol. Exp. Morphol. 30, 561–572

    Google Scholar 

  • Gilboa, E., Eglitis, M.A., Vanroff, P.W. & Anderson, W.F. (1986) Biotechniques 4, 504–512

    Google Scholar 

  • Handyside, A.H. & Barton, S.C. (1977) J. Embryol. Exp. Morphol. 37, 217–226

    Google Scholar 

  • Harbers, K., Jahner, D. & Jaenisch, R. (1981) Nature (London) 293, 540–542

    Article  Google Scholar 

  • Hooper, M., Hardy, K., Handyside, A., Hunter, S. & Monk, M. (1987) Nature (London) 326, 292–295

    Article  Google Scholar 

  • Jahner, D., Haase, K., Mulligan, R. & Jaenisch, R. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 6927–6931

    Article  Google Scholar 

  • Kuehn, M.R., Bradley, A., Robertson, E.J. & Evans, M.J. (1987) Nature (London) 326, 295–298

    Article  Google Scholar 

  • Laskey, RA. & Gurdon, J.B. (1973) Eur. J. Biochem. 37, 467–471

    Article  Google Scholar 

  • Mackett, M., Smith, G.L. & Moss, B. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 7415–7419

    Article  Google Scholar 

  • Martin, G.R. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 6314–6317

    Article  Google Scholar 

  • Mintz, B. & Cronmiller, C. (1981) Somatic Cell Genet. 7, 489–505

    Article  Google Scholar 

  • Murray, A.W. & Szostak, J.W. (1983) Nature (London) 305, 189–193

    Article  Google Scholar 

  • Murray, A.W., Schuttes, N.P. & Szostak, J.W. (1986) Cell 45, 529–536

    Article  Google Scholar 

  • Nadijcka, M. & Hillman, N. (1974) J. Embryol. Exp. Morphol. 32, 675–695

    Google Scholar 

  • Nancarrow, C., Marshall, J., Murray, J., Hazelton, I. & Ward, K. (1987) Theriogenology 27, 263

    Article  Google Scholar 

  • Neumann, E., Shaefer-Ridder, M., Wang, Y. and Hofschneider, P.H. (1982) EMBO J. 1, 841–845

    Google Scholar 

  • Palmiter, R.D. & Brinster, R.L. (1986) Annu. Rev. Genet. 20, 465–499

    Article  Google Scholar 

  • Petters, R.M., Shuman, R.M., Johnson, B.H. & Mettus, R.V. (1987) J. Exp. Zool. 242, 85–88

    Article  Google Scholar 

  • Rassoulzadegen, M., Leopold, P., Vailly, J. & Cuzin, F. (1986) Cell 46, 513–519

    Article  Google Scholar 

  • Robertson, E J. (1986) Trends Genet. 2, 9–13

    Article  Google Scholar 

  • Robertson, E., Bradley, A., Kuehn, M. & Evans, M. (1986) Nature (London) 323, 445–448

    Article  Google Scholar 

  • Silver, L.M., Martin, G.R. & Strickland, S. (1983) Teratocarcinoma Stem Cells. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Soriano, P., Cone, R.D., Mulligan, R.C. & Jaenisch, R. (1986) Science 234, 189–193

    Article  Google Scholar 

  • Stewart, C.L., Vanek, M. & Wagner, E.F. (1985) EMBO J. 4, 3701–3709

    Google Scholar 

  • Surani, M.A.H., Barton, S.C. & Norris, M.L. (1987) Biol. Reprod. 36, 1–16

    Article  Google Scholar 

  • Vize, P.D., Michalska, A.E., Ashman, R., Lloyd, B., Stone, BA., Quinn, P., Wells, J.R.E. & Seamark, R.F. (1988) J. Cell. Sci., in the press

    Google Scholar 

  • Wagner, F.F., Veller, G., Gilboa, E., Ruther, U. & Stewart, CL. (1985) Cold Spring Harbor Symp. Quant. Biol. 50, 691–700

    Article  Google Scholar 

  • Walker, S.K., Ashman, R.J., McLaughlin, K.J., Seamark, R.F., Smith, D.H., Vize, P. & Wells, J.R.E. (1987a) Aust. Soc. Reprod. Biol. Proc. Nineteenth Annual Conf., Sydney, p. 52

    Google Scholar 

  • Walker, SX, Smith, D.H., Seamark, R.F. & Godfrey, B. (1987b) Theriogenology 28, 129–137

    Article  Google Scholar 

  • Weinhues, U., Hosokawa, K., Hoveler, A., Siegman, B. & Doetler, W. (1987) DNA (N.Y.) 6, 81–89

    Google Scholar 

  • Willadsen, S.M. (1986) Nature (London) 320, 63–65

    Article  Google Scholar 

  • Winterbeiger-Torres, S. & Flechon, J.E. (1974) J. Anat. 118, 143–153

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Chapman & Hall, London & New York

About this chapter

Cite this chapter

Seamark, R.F. (1988). Efficient Creation of Transgenic Sheep: The Challenge for the Cell Biologist. In: Rogers, G.E., Reis, P.J., Ward, K.A., Marshall, R.C. (eds) The Biology of Wool and Hair. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-9702-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-9702-1_34

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-9704-5

  • Online ISBN: 978-94-011-9702-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics