Skip to main content

Large-Scale Temperature Changes Across the Southern Andes: 20th-Century Variations in the Context of the Past 400 Years

  • Chapter
Climate Variability and Change in High Elevation Regions: Past, Present & Future

Abstract

Long-term trends of temperature variations across the southern Andes (37–55° S) are examined using a combination of instrumental and tree-ring records. A critical appraisal of surface air temperature from station records is presented for southern South America during the 20th century. For the interval 1930–1990, three major patterns in temperature trends are identified. Stations along the Pacific coast between 37 and 43° S are characterized by negative trends in mean annual temperature with a marked cooling period from 1950 to the mid-1970s. A clear warming trend is observed in the southern stations (south of 46° S), which intensifies at higher latitudes. No temperature trends are detected for the stations on the Atlantic coast north of 45° S. In contrast to higher latitudes in the Northern Hemisphere where annual changes in temperature are dominated by winter trends, both positive and negative trends in southern South America are due to mostly changes in summer (December to February) temperatures. Changes in the Pacific Decadal Oscillation (PDO) around 1976 are felt in summer temperatures at most stations in the Pacific domain, starting a period with increased temperature across the southern Andes and at higher latitudes. Tree-ring records from upper-treeline were used to reconstruct past temperature fluctuations for the two dominant patterns over the southern Andes. These reconstructions extend back to 1640 and are based on composite tree-ring chronologies that were processed to retain as much low-frequency variance as possible. The resulting reconstructions for the northern and southern sectors of the southern Andes explain 55% and 45% of the temperature variance over the interval 1930–1989, respectively. Cross-spectral analysis of actual and reconstructed temperatures over the common interval 1930–1989, indicates that most of the explained variance is at periods >10 years in length. At periods >15 years, the squared coherency between actual and reconstructed temperatures ranges between 0.6 and 0.95 for both reconstructions. Consequently, these reconstructions are especially useful for studying multi- decennial temperature variations in the South American sector of the Southern Hemisphere over the past 360 years. As a result, it is possible to show that the temperatures during the 20th century have been anomalously warm across the southern Andes. The mean annual temperatures for the northern and southern sectors during the interval 1900–1990 are 0.53 °C and 0.86 °C above the 1640–1899 means, respectively. These findings placed the current warming in a longer historical perspective, and add new support for the existence of unprecedented 20th century warming over much of the globe. The rate of temperature increase from 1850 to 1920 was the highest over the past 360 years, a common feature observed in several proxy records from higher latitudes in the Northern Hemisphere. Local temperature regimes are affected by changes in planetary circulation, with in turn are linked to global sea surface temperature (SST) anomalies. Therefore, we explored how temperature variations in the southern Andes since 1856 are related to large-scale SSTs on the South Pacific and South Atlantic Oceans. Spatial correlation patterns between the reconstructions and SSTs show that temperature variations in the northern sector of the southern Andes are strongly connected with SST anomalies in the tropical and subtropical Pacific. This spatial correlation pattern resembles the spatial signature of the PDO mode of SST variability over the South Pacific and is connected with the Pacific-South American (PSA) atmospheric pattern in the Southern Hemisphere. In contrast, temperature variations in the southern sector of the southern Andes are significantly correlated with SST anomalies over most of the South AtlantiC., and in less degree, over the subtropical Pacific. This spatial correlation field regressed against SST resembles the ‘Global Warming’ mode of SST variability, which in turn, is linked to the leading mode of circulation in the Southern Hemisphere. Certainly, part of the temperature signal present in the reconstructions can be expressed as a linear combination of four orthogonal modes of SST variability. Rotated empirical orthogonal function analysis, performed on SST across the South Pacific and South Atlantic Oceans, indicate that four discrete modes of SST variability explain a third, approximately, of total variance in temperature fluctuations across the southern Andes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aceituno, P., Fuenzalida, H., and Rosenblüth, B.: 1993, ‘Climate along the Extratropical Coast of South America’, in Mooney, H. A., Fuentes, E. R., and Kronberg, B. I. (eds.), Earth Systems Responses to Global Change: Contrast between North and South America, Academic Press, New York, U.S.A., pp. 61–69.

    Google Scholar 

  • Alexandersson, H.: 1986, ‘A Homogeneity Test Applied to Precipitation Data’, J. Climatol. 6, 661–675.

    Article  Google Scholar 

  • Allan, R. J.: 2000, ‘ENSO and Climatic Variability in the Past 150 Years’, in Diaz, H. and Markgraf, V. (eds.), El Niño and the Southern Oscillation, Multiscale Variability and Global and Regional Impacts, Cambridge University Press, pp. 3–56.

    Google Scholar 

  • Almeyda, A. E. and Saez. S. F.: 1958, Recopilación de datos climáticos de Chile y mapas sinópticos respectivos, Ministerio de Agricultura, Santiago, Chile.

    Google Scholar 

  • Aravena, J. C., Lara, A., Wolodarsky, A., and Cuq, E.: 2000, ‘Dendroclimatology of Nothofagus pumilio Forests in the Upper Treeline of Magallanes Region, Chile’, International Conference on Dendrochronology for the Third Millenium, Abstracts Vol., Mendoza, Argentina, 216 pp.

    Google Scholar 

  • Beniston, M. (ed.): 1994, Mountain Environments in Changing Climates, Routledge Publishing Co., London and New York, 492 pp.

    Google Scholar 

  • Biasing, T. J., Solomon, A. M., and Duvick, D. N.: 1984, ‘Response Functions Revisited’, Tree-Ring Bull 44, 1–15.

    Google Scholar 

  • Boninsegna, J. A., Keegan, J., Jacoby, G. C., D’Arrigo, R. D., and Holmes, R. L.: 1989, ‘Dendrochronological Studies in Tierra del Fuego, Argentina’, Quaternary of South America and Antarctic Peninsula 7, 315–326.

    Google Scholar 

  • Bradley, R. S.: 1999, ‘Paleoclimatology: Reconstructing Climates of the Quaternary’, Academic Press, San Diego, U.S.A., 610 pp.

    Google Scholar 

  • Bradley, R. S. and Jones, P. D.: 1993, ‘Little Ice Age Summer Temperature Variations: Their Nature and Relevance to Recent Global Warming Trends’, The Holocene 3, 367–376.

    Article  Google Scholar 

  • Bretherton, C. S., Widmann, M., Dymnikov, V. P., Wallace, J. M., and Blade, I.: 1999, ‘The Effective Number of Spatial Degrees of Freedom of a Time-Varying Field’, J. Climate 12, 1990–2009.

    Article  Google Scholar 

  • Briffa, K. R.: 1995, ‘Interpreting High-Resolution Proxy Climate Data — The Example of Dendroclimatology’, in von Storch, H. and Navarra, A. (eds.), Analysis of Climate Variability, Applicationsof Statistical Techniques, Springer, Berlin, pp. 77–94.

    Google Scholar 

  • Briffa, K. R., Jones, P. D., Bartholin, T. S., Eckstein, D., Schweingruber, F. H., Karien, W., Zetterberg, P., and Eronen, M.: 1992, ‘Fennoscandian Summers from AD 500: Temperature Changes on Short and Long Time Scales’, Clim. Dyn. 7, 111–119.

    Article  Google Scholar 

  • Briffa, K. R., Jones, P. D., Bartholin, T. S., Schweingruber, F. H., Karien, W., and Shiyatov, S. G.: 1996, ‘Tree-Ring Variables as Proxy-Climate Indicators: Problems with Low-Frequency Signals’, in Jones, P. D., Bradley, R. S., Jouzel, J. (eds), Climate Variations and Forcing Mechanisms of the Last 2000 Years, NATO ASI Series, Vol. 141, Springer, Heidelberg, pp. 9–41.

    Chapter  Google Scholar 

  • Casassa, G.: 1995, ‘Glacier Inventory in Chile: Current Status and Recent Glacier Variations’, Ann. Glaciol. 21, 317–322.

    Google Scholar 

  • Cook, E. R.: 1987, ‘The Decomposition of Tree Ring Series for Environmental Studies’, Tree-Ring Bull 47, 37–59.

    Google Scholar 

  • Cook, E. R., Briffa, K., Shiyatov, S., and Mazepa, V.: 1990, ‘Tree-Ring Standardization and Growth-Trend Estimation’, in Cook, E. and Kairiukstis, L. (eds.), Methods of Dendrochronology, Kluwer Academic Publishers, Amsterdam, The Netherlands, pp. 104–132.

    Google Scholar 

  • Cook, E. R., Buckley, B. M., D’Arrigo, R. D., and Peterson, M. J.: 2000, ‘Warm-Season Temperatures since 1600 BC Reconstructed from Tasmanian Tree Rings and their Relationship to Large-Scale Sea Surface Temperature Anomalies’, Clim. Dyn. 16, 79–91.

    Article  Google Scholar 

  • Cook, E. R. and Peters, K.: 1981, ‘The Smoothing Spline: A New Approach to Standardizing Forest Interior Ring-Width Series for Dendroclimatic Studies’, Tree-Ring Bull. 41, 45–53.

    Google Scholar 

  • Cooley, W. W. and Lohnes, P.R.: 1971, Multivariate Data Analysis, Wiley, New York, U.S.A.

    Google Scholar 

  • De Fina, A. L.: 1972, ‘El clima de la región del los bosques andino-patagónicos argentinos’, in Dimitri, M. J. (ed.), La región de los bosques andino-patagónicos, Colección Científica del INTA, 10, 35–58.

    Google Scholar 

  • Diaz, H. F. and Kiladis, G. N.: 1992, ‘Atmospheric Teleconnections Associated with the Extreme Phases of the Southern Oscillation’, in Diaz, H. F. and Markgraf, V (eds.), El Niño: Historical and Paleoclimatic Aspects of the Southern Oscillation, Cambridge: Cambridge University Press, pp. 7–28.

    Google Scholar 

  • Doake, C. S. M. and Vaughan, D. G.: 1991, ‘Rapid Disintegration of the Wordie Ice Shelf in Response to Atmospheric Warming’, Nature 350, 328–330.

    Article  Google Scholar 

  • Draper, N. R. and Smith, H.: 1981, Applied Regression Analysis, 2nd edn., John Wiley and Sons, New York, U.S.A.

    Google Scholar 

  • Ebbesmeyer, C. C., Cayan, D. R., McLain, D. R., Nichols, F. H., Peterson, D. H., and Redmond, K. T.: 1991, ‘1976 Step in the Pacific Climate: Forty Environmental Changes between 1968–75 and 1977–84’, in Betancourt, J. L. and Tharp, V. L. (eds.), Proceedings of the 7th Annual Pacific Climate Workshop, California Department of Water Resources, Interagency Ecological Studies Program, Report 26, pp. 115–126.

    Google Scholar 

  • Enfield, D. B. and Mestas-Nuñez, A. M.: 1999, ‘Multiscale Variabilities in Global Sea Surface Temperature and their Relationships with Tropospheric Climate Patterns’, J. Climate 12, 2719–2733.

    Article  Google Scholar 

  • Enfield, D. B. and Mestas-Nuñez, A. M.: 2000, ’Global Modes of ENSO and Non-ENSO Sea Surface Temperature Variability and their Associations with Climate, in Diaz, H. and Markgraf, V. (eds.), El Niño and the Southern Oscillation, Multiscale Variability and Global and Regional Impacts, Cambridge University Press, pp. 89–112.

    Google Scholar 

  • Fritts, H. C.: 1976, Tree Rings and Climate, Academic Press, London.

    Google Scholar 

  • Gallopín, G. C.: 1978, ‘Estudio ecológico integrado de la cuenca superior del Río Manso Superior (Río Negro, Argentina). I. Descripción general de la cuenca’, Anales de Parques Nacionales 14, 161–230.

    Google Scholar 

  • Garreaud, R. and Battisti, D. S.: 1999, ‘Interannual and Interdecadal (ENSO-Like) Variability in the Southern Hemisphere Tropospheric Circulation’, J. Climate 12, 2113–2123.

    Article  Google Scholar 

  • Geiger, R.: 1965, The Climate near the Ground, Harvard University Press, Cambridge, Massachusetts, U.S.A., 277 pp.

    Google Scholar 

  • Graham, N. E.: 1994, ‘Decadal-Scale Climate Variability in the 1970s and 1980s: Observations and Model Results’, Clim. Dyn. 10, 135–162.

    Article  Google Scholar 

  • Guiot, J.: 1990: ‘Methods of Calibration’, in Cook, E. R. and Kairiukstis, L. A. (eds.), Methods of Dendrochronology. Applications in the Environmental Sciences, Kluwer Academic Publishers, Dordrecht, pp. 165–178.

    Google Scholar 

  • Gordon, G. A. and LeDu C., S. K.: 1981, ‘Verification Statistics for Regression Models’, in Am. Meteorol. Soc. (ed.), Preprints Seventh Conference on Probability and Statistics in Atmospheric Sciences, Monterey, California, U.S.A., pp. 129–133

    Google Scholar 

  • Hoffman, A. J.: 1990, ‘De las variaciones de la temperatura del aire en la Argentina y estaciones de la zona subantártica adyacente, desde 1903 hasta 1989 inclusive’, Primera Conferencia Latinoamericana sobre Geofísica, Geodesia e Investigación Espacial Antárcticas, Buenos Aires, pp. 160–168.

    Google Scholar 

  • Jacoby, G. C. and D’Arrigo, R. D.: 1989, ‘Reconstructed Northern Hemisphere Annual Temperature since 1671 Based on High-Latitude Tree-Ring Data from North America’, Clim. Change 14, 39–49.

    Article  Google Scholar 

  • Jenkins, G. M. and Watts, D. G.: 1968, Spectral analysis and its applications, Holden-Day, San Francisco, U.S.A., 525 pp.

    Google Scholar 

  • Jobbágy, E. G., Paruelo, J. M., and León, R. J. C.: 1995, ‘Estimación del régimen de precipitación a partir de la distancia a la cordillera en el noroeste de la Patagonia’, Ecología Austral 5, 47–54.

    Google Scholar 

  • Jones, P. D. and Briffa, K. R.: 1992, ‘Global Surface Air Temperature Variations during the Twentieth Century: Part 1, Spatial, Temporal and Seasonal Details’, The Holocene 2, 165–179.

    Google Scholar 

  • Kaplan, A., Cane, M. A., Kushnir, Y., Clement, A. C., Blumenthal, M. B., and Rajagopalan, B.: 1998, ‘Analyses of Global Sea Surface Temperature 1856–1991’, J. Geophys. Res. 103, 1856–18589.

    Article  Google Scholar 

  • Karl, T. R., Jones, P. D., Knight, R. W., Kukla, G., Plummer, N., Gallo, K. P, Lindesay, J., Charlson, R. J., and Peterson, T. C.: 1993, ‘Asymmetric Trends of Daily Maximum and Minimum Temperature’, Bull. Amer. Meteorol. 74, 1007–1023.

    Article  Google Scholar 

  • Karoly, D. J.: 1989, ‘Southern Hemisphere Circulation Features Associated with El Niño-Southern Oscillation’, J. Climatel, 1239–1252.

    Google Scholar 

  • King, J. C.: 1994, ‘Recent Climate Variability in the Vicinity of the Antarctic Peninsula’, Int. J. Clim. 14, 357–369.

    Article  Google Scholar 

  • Köner, C.: 1999, Alpine Plant Life. Functional Plant Ecology of High Mountain Ecosystems, Springer, Berlin.

    Google Scholar 

  • Lara, A., Aravena, J. C., Villalba, R., Wolodarsky-Franke, A., Luckman, B. H., and Wilson, R.: 2001, ‘Dendroclimatology of High-Elevation Nothofagus pumilio Forests at their Northern Distribution Limit in the Central Andes of Chile, Can. J. Forest Res. 31, 925–936.

    Google Scholar 

  • Lara, A. and Villalba, R.: 1993, ‘A 3620-Year Temperature Record from Fitzroya cupressoides Tree Rings in Southern South America’, Science 260: 1104–1106.

    Article  Google Scholar 

  • Luckman, B. H. and Boninsegna, J. A.: 2001, ‘The Assessment of Present, Past and Future Climate Variability in the Americas from Treeline Environments’, PAGES News 9, 17–19.

    Google Scholar 

  • Luckman, B. H. and Villalba, R.: 2001, ‘Assessing the Synchroneity of Glacier Fluctuations in the Western Cordillera of the Americas during the Last Millennium’, in Markgraf, V. (ed.), Inter-Hemispheric Climate Linkages, Academic Press, San Diego, California, U.S.A., pp. 119–140.

    Chapter  Google Scholar 

  • Mantua, J. N., Hare, S. R., Zhang, Y., Wallace, J. M., and Francis, R. C.: 1997, ‘A Pacific Interdecadal Climate Oscillation with Impacts on Salmon Production’, Bull Amer. Meteorol. 78, 1069–1080.

    Article  Google Scholar 

  • Masiokas, M. H., Villalba, R., Trombotto, D., Delgado, S., Luckman, B., Ripalta, A., and Hernandez, J.: 2001, ‘Dendrogeomorphological Reconstruction of Glacier Variations in Northern Patagonia during the Past 1000 Years’, in Kaennel Dobbertin, M. and Bräker, O. U. (eds.), International Conference on Tree Rings and People, Abstracts, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland.

    Google Scholar 

  • Miller, A.: 1976, ‘The Climate of Chile’, in Schwerdtfeger, W. (ed.), World Survey of Climatology. Climates of Central and South America, Elsevier, Amsterdam, The Netherlands, pp. 113–131.

    Google Scholar 

  • Mitchell, J. M. Jr., Dzerdseevskii, B., Flohn, H., Hofmeyr, W. L., Lamb, H. H., Rao, K. N., and Wallen, C. C.: 1966, Climatic Change, World Meteorological Organization, Technical Note 79, pp. 79.

    Google Scholar 

  • Mo, K.: 2000, ‘Relationships between Low-Frequency Variability in the Southern Hemisphere and Sea Surface Temperature Anomalies’, J. Climate 13, 3599–3610.

    Article  Google Scholar 

  • Naruse, R. and Aniya, M.: 1992, ‘Outline of Glacier Research Project in Patagonia’, Bull. Glacier Res. 10, 31–38.

    Google Scholar 

  • Osborn, T. J., Briffa, K. R., and Jones, P. D.: 1997, Adjusting Variance for Sample-Size in Tree-Ring Chronologies and other Regional-Mean Time Series’, Dendrochronologia 15, 89–99.

    Google Scholar 

  • Overpeck, J., Hughen, K., Hardy, D., Bradley, R., Case, R., Douglas, M., Finney, B., Gajewski, K., Jacoby, G., Jennings, A., Lamoureux, S., Lasca, A., MacDonald, G., Moore, J., Retelle, M., Smith, S., Wolfe, A., and Zielinski, G.: 1997, ‘Arctic Environmental Change of the Last Four Centuries’, Science 278, 1251–1256.

    Article  Google Scholar 

  • Percival, D. B. and Walden, A. T.: 1993, ‘Multitaper Spectral Estimation’, in Percival D. B. and Walden A. T. (eds.), Spectral Analysis for Physical Applications: Multitaper and Conventional Univariate Techniques, Cambridge University Press, Cambridge, pp. 331–337.

    Chapter  Google Scholar 

  • Preisendorfer, R. W., Zwiers, F. W., and Barnett, T. P.: 1981, Foundations of Principal Components Selection Rules, SIO Ref. Ser. 81–14, Scripps Institution of Oceanography, La Jolla, California, U.S.A.

    Google Scholar 

  • Prohaska, F.: 1976, ‘The Climate of Argentina, Paraguay and Uruguay’, in Schwerdtfeger, W. (ed.), World Survey of Climatology, Climates of Central and South America, Elsevier, Amsterdam, The Netherlands, pp. 13–112.

    Google Scholar 

  • Priestley, M. B.: 1992, Spectral Analysis and Time Series, Academic Press, London.

    Google Scholar 

  • Quinn, W. H.: 1992, ‘A Study of Southen Oscillation-Related Climatic Activity for A.D. 622–1990 Incorporating Nile River Flow Data’, in Diaz, H. F. and Markgraf, V (eds.), El Niño: Historical and Paleoclimatic Aspects of the Southern Oscillation, Cambridge University Press, Cambridge, pp. 119–149.

    Google Scholar 

  • Richman, M. B.: 1986, ‘Rotation of Principal Components: A review’, J. Climatol. 6, 293–336.

    Article  Google Scholar 

  • Roig, F A., Aravena, J. C., and Lara, A.: 2000, ‘Tree-Ring Studies from Upper Treeline Environments of Tierra del Fuego and Navarino Island’, International Conference on Dendrochronology for the Third Millenium, Abstracts Vol., Mendoza, Argentina, 239 pp.

    Google Scholar 

  • Rosenblüth, B., Casassa, G., and Fuenzalida, H.: 1995, ‘Recent Climatic Changes in Western Patagonia’, Bull. Glacier Res. 13, 127–132.

    Google Scholar 

  • Rosenbluth, B., Fuenzalida, H. A., and Aceituno, P.: 1997, ‘Recent Temperature Variations in Southern South America’, Int. J. Clim. 17, 67–85.

    Article  Google Scholar 

  • Taljaard, J. J.: 1972, ‘Synoptic Meteorology of the Southern Hemisphere’, Meteorological Monographs 13, 139–213.

    Google Scholar 

  • Thomson, D. J.: 1990, ‘Time Series Analysis of Holocene Climate Data’, Phil. Trans. Roy. Soc. London 330, 601–616.

    Article  Google Scholar 

  • Tranquillini, W.: 1979, Physiological Ecology of the Alpine Timberline, Springer-Verlag, New York, U.S.A., 137 pp.

    Book  Google Scholar 

  • Trenberth, K. E.: 1990, ‘Recent Observed Interdecadal Climate Changes in the Northern Hemisphere’, Bull Amer. Meteorol. 71, 988–993.

    Article  Google Scholar 

  • Trenberth, K. E. and Hurrell, J. W.: 1994, ‘Decadal Atmosphere-Ocean Variations in the Pacific’, Clim. Dyn. 9, 303–319.

    Article  Google Scholar 

  • Schmelter, A.: 2000. Climatic Response and Growth-Trends of Nothofagus pumilio along Altitudinal Gradients from Arid to Humid Sites in Northern Patagonia, Ph.D. Dissertation, Universität Bonn, Bonn, Germany.

    Google Scholar 

  • Schwerdtfeger, W.: 1960, ‘The Seasonal Variation of the Strength of the Southern Circulation Vortex’, Mon. Wea Rev. 88, 203–208.

    Article  Google Scholar 

  • Schwerdtfeger, W.: 1962, Meteorología del área del Pasaje de Drake’, Servicio de Hidrografía Naval, Secretaría de Marina, Buenos Aires, 78 pp.

    Google Scholar 

  • Van Loon, H., Kidson, J. W., and Mullan, A. N.: 1993, ‘Decadal Variation of the Annual Cycle in the Australian Dataset’, J. Climate 6, 1227–1231.

    Article  Google Scholar 

  • Vautard, R. and Ghil, M.: 1989, ‘Singular Spectrum Analysis in Nonlinear Dynamics, with Applications to Paleoclimatic Time Series’, Physica D 35, 395-A2A.

    Article  Google Scholar 

  • Villalba, R.: 1990, ‘Climatic Fluctuations in Northern Patagonia in the Last 1000 Years as Inferred from Tree-Ring Records’, Quatern. Res. 34, 346–360.

    Article  Google Scholar 

  • Villalba, R.: 1994, ‘Tree-Ring and Glacial Evidence for the Medieval Warm Epoch and the Little Ice Age in Southern South America’, Clim. Change 26, 183–197.

    Article  Google Scholar 

  • Villalba, R.: 2000, ‘Dendroclimatology: A Southern Hemisphere Perspective’, in Smolka, P. and Volkheimer, W. (eds.), Paleo- and Neoclimates of the Southern Hemisphere: The State of the Arts, Springer, Germany, pp. 105–143.

    Google Scholar 

  • Villalba, R., Boninsegna, J. A., and Cobos D. R.: 1989, ‘A Tree-Ring Reconstruction of Summer Temperature between AD 1500 and 1974 in Western Argentina’, Third International Conference on Southern Hemisphere Meteorology and Oceanography, Buenos Aires, Argentina, American Meteorological Society, pp. 196–197.

    Google Scholar 

  • Villalba, R., Boninsegna, J. A., Veblen, T. T., Schmelter, A., and Rubulis, S.: 1997, ’Recent Trends in Tree-Ring Records from High Elevation Sites in the Andes of Northern Patagonia, Clim. Change 36, 425–454.

    Article  Google Scholar 

  • Villalba, R., D’Arrigo, R. D., Boninsegna, J. A., Lara, A., and Delgado, S.: ‘Decade- to Century-Scale Climatic Variability in the South American Sector of the Southern Oceans: Evidence from Tree-Ring Records during the Past Four Centuries’, J. Climate, submitted.

    Google Scholar 

  • Villalba, R., D’Arrigo, R. D., Cook, E. R., Wiles, G., and Jacoby, G. C.: 2001, ‘Decadal-Scale Climatic Variability along the Extratropical Western Coast of the Americas: Evidences from Tree-Ring Records’, in Markgraf, V (ed.), Inter-Hemispheric Climate Linkages, Academic Press, San Diego, California, U.S.A., pp. 155–172.

    Chapter  Google Scholar 

  • Von Storch, H.: 1995, ‘Spatial Patterns: EOFs and CCA’, in von Storch, H. and Navarra, A. (eds.), Analysis of Climate Variability, Applications of Statistical Techniques, Springer, Berlin, pp. 259–279.

    Google Scholar 

  • Vose, R. S., Schmoyer, R. L., Steurer, P. M., Peterson T. C., Heim, R., Karl, T. R., and Eischeid, J. K.: 1992, The Global Historical Climatology Network: Long-Term Monthly Temperature, Precipitation, Sea Level Pressure, and Station Pressure Data, ORNL/CDIAC-53, Environmental Science Division, Pub. No. 3912.

    Google Scholar 

  • WMO: 1998, ‘The Global Climate System Review, December 1993-May 1996’, Nicholls, J. M. (ed.), World Climate Data and Monitoring Programme, WMO No. 856, 95 pp.

    Google Scholar 

  • Wolodarsky-Franke, A., Lara, A., Aravena, J. C., and Cuq, E.: 2000, ‘Dendroclimatology of Nothofagus pumilio Treeline Forests in the Aysén Region, Chile (43° to 48° S)’. International Conference on Dendrochronology for the Third Millenium, Abstracts Vol., Mendoza, Argentina, 249 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Villalba, R. et al. (2003). Large-Scale Temperature Changes Across the Southern Andes: 20th-Century Variations in the Context of the Past 400 Years. In: Diaz, H.F. (eds) Climate Variability and Change in High Elevation Regions: Past, Present & Future. Advances in Global Change Research, vol 15. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-1252-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-1252-7_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6322-9

  • Online ISBN: 978-94-015-1252-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics