Skip to main content

Experimental Demonstration of Quantum Dense Coding and Quantum Cryptography with Continuous Variables

  • Chapter
Quantum Information with Continuous Variables
  • 1300 Accesses

Abstract

In this paper we will present the experimental demonstrations of quantum dense coding and quantum cryptography using continuous electromagnetic field with Einstein-Podolsky-Rosen(EPR) correlations. The bright EPR optical beams with the quantum correlations between the amplitude and phase quadratures are produced from a nondegenerate optical parametric amplifier. The direct detection technology of the Bell-state is utilized in the measurements of the quantum correlations and the signals modulated on the quadratures instead of usual homodyne detection. Usability of experimentally accessible squeezed-state entanglements, high efficiencies of bit transmission and information detection, relatively straightforward systems and operating procedures, and security directly provided by quantum correlations make the presented schemes valuable to be applied to the developing quantum information science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Braunstein, S. L. (1998) Error correction for continuous quantum variables. Phys. Rev. lett. 80, 4084–4087.

    Article  ADS  Google Scholar 

  2. Braunstein, S. L. (1998) Quantum error correction for communication with linear optics. Nature (London) 394. 47–49

    Article  ADS  Google Scholar 

  3. Braunstrin, S. L. & Kimble, H. J. (2000) Dense coding for continuous variables. Phys. Rev. A 61, 042302

    Article  MathSciNet  ADS  Google Scholar 

  4. Ban, M. (1999) Quantum dense coding via a two-mode squeezed-vacuum state. J. opt. B: Quantum Semiclass. Opt. 1 L9–L11

    Article  MathSciNet  ADS  Google Scholar 

  5. Loock, P. Van & Braunstein, S. L. (2000) Uconditional entanglement swapping for continuous variables. Phys. Rev. A 61, 10302(R)

    Google Scholar 

  6. Gottesman, D., & Preskill, J. (2001) Secure quantum key distribution using squeezed states. Phys. Rev. A 63, 022309

    Article  ADS  Google Scholar 

  7. Hillery, M., (2000) Quantum cryptography with squeezed states. Phys. Rev. A 61, 022309

    Article  ADS  Google Scholar 

  8. Cerf, N. J., Levy, M., & Assche, G. V., (2000) Quantum distribution of Gaussian keys using squeezed states. Phys. Rev. A 63,052311

    Article  ADS  Google Scholar 

  9. Cerf, N. J., Iblisdir, S., & Assche, G. V., (2001) Cloning AND Cryptography with Quantum Continuous Variables, quant-ph/0107077 [Eur. Phys.J.D(to be published)]

    Google Scholar 

  10. Assche G. V. et al., (2001) Reconciliation of a Quantum-Distributed Gaussian Key. cs.CR/0107030 (to be published)

    Google Scholar 

  11. Ralph, T. C. (2000) Continuous variable quantum cryptography. Phys. Rev. A61,010303(R)

    MathSciNet  ADS  Google Scholar 

  12. Ralph, T. C., (2000) Security of continuous-variable quantum cryptography. Phys. Rev. A 62, 062306

    Article  MathSciNet  ADS  Google Scholar 

  13. Reid, M. D., (2000) Quantum cryptography witz a predetermined key, using continuous-variable Einstein-Podolsky-Rosen correlations. Phys. Rev. A 62, 062308

    Article  ADS  Google Scholar 

  14. Silberhorn, C., Korolkova, N., & Leuchs, G., (2001) Quantum key distribution with bright entangled beams. quant-ph/0109009

    Google Scholar 

  15. Pereira, S. F., Ou, Z. Y., & Kimble, H. J., (2000) Quantum communication with correlated nonclassical states. Phys. Rev. A 62, 042311; Kimble, H. J., Ou, Z. Y, & Pereira, S. R, Method and Apparatus for Quantum Communication Employing Nonclassical Correlations of Quadrature-Phase Amplitudes. U.S. Patent No. 5, 339,182, Issued 8/16/94.

    Article  ADS  Google Scholar 

  16. Bencheikh, K. et al., (2001) Quantum key distribution with continuous variables. J. Mod. Opt. 48, 1903

    Article  ADS  MATH  Google Scholar 

  17. Lorenz, S. et al., (2001) Squeezed light from microstructured fibres: towards free space quantum cryptography. quant-ph/0109018

    Google Scholar 

  18. Navez, P. et al., (2001) A “quantum public key” based cryptographic scheme for continuous variables. quant-ph/0101113

    Google Scholar 

  19. Grosshans, F., & Grangier, P., (2002) Continuous Variable Quantum Cryptography Using Coherent States. Phys. Rev. Lett. 88, 057902

    Article  ADS  Google Scholar 

  20. Furusawa, A. et al. (1998) Unconditional quantum teleportation. Science 282, 706–709

    Article  ADS  Google Scholar 

  21. Li, X. Y et al. Quantum Dense Coding Exploiting a Bright Einstein-Podolsky-Rosen Beam. Phys. Rev. Lett. 88, 047904 (2002)

    Article  ADS  Google Scholar 

  22. Reid, M. D., & Drammond, P. D. (1988) Quantum Correlations of Phase in Nondegenerate Parametric Oscillation. Phys. Rev. Lett. 60, 2731–2733

    Article  ADS  Google Scholar 

  23. Reid, M. D. (1989) Demonstration of the Einstein-Podolsky-Rosen paradox using nondegenerate parametric amplification. Phys. Rev. A 40, 913

    Article  ADS  Google Scholar 

  24. Ou, Z. Y, Pereira, S. F., & Kimble, H. J. (1992) Realization of the Einstein-Podolsky-Rosen paradox for continuous variables in nondegenerate optical parametric amplifier. Appl. Phys. B 55, 265

    Article  ADS  Google Scholar 

  25. Zhang, Y et al. (2000) Experimental generation of bright two-mode quadrature squeezed light from a narrow-band nondegenerate optical parametric amplifier. Phys. Rev. A 62, 023813

    Article  ADS  Google Scholar 

  26. Zhang, Y, Su, H., Xie, C. D. & Peng, K. C. (1999) Quantum variances and squeezing of output field from NOPA. Phys. Lett. A 259, 171

    Article  ADS  Google Scholar 

  27. Li, X. Y, Pan, Q., Jing, J. T., Xie, C. D., & Peng, K. C.,(2001) LD pumped intracavity frequency-doubled and frequency-stabilized Nd:YAP/KTP laser with 1.1w output at 540nm, Optics Communications, (01) 01685–6

    Google Scholar 

  28. Zhang, J. & Peng, K. C. (2000) Quantum teleportation and dense coding by means of bright amplitude-squeezed light and direct measurement of a Bell state. Phys. Rev. A 62, 064302

    Article  ADS  Google Scholar 

  29. Jing, J., Pan, Q., Xie, C. D. & Peng, K. C. (2002) Quantum Cryptography Using Einstein-Podolsky-Rosen Correlations of Continuous Variables. quant-ph/0204111

    Google Scholar 

  30. Pan, Q., Zhang, Y., Zhang, T. C., Xie, C. D. & Peng, K. C., Experimental investigation of intensity fifference squeezing using Nd:YAP laser as pump source, J. Phys. D: Appl. Phys. 30 (1997) 1588–1590

    Article  ADS  Google Scholar 

  31. Julsgaard, B., Kozhekin, A., & Polzik, E. S. (2001) Experimental long-lived entanglement of two macroscopic objects. Nature 413, 400–403

    Article  ADS  Google Scholar 

  32. Parkins, A. S. & Kimble, H. J. (2000) Position-momentum Einstein-Podolsky-Rosen state of distantly separated trapped atoms. Phys. Rev. A 61,052104

    Article  ADS  Google Scholar 

  33. Li, Y. Q., Lynam, P., Xiao, M., & Edwards, P. J. Sub-Shot-Noise laser Doppler Anemometry with Amplitude-Squeezed Light. Phys. Rev. Lett. 78, 3105 (1997)

    Article  ADS  Google Scholar 

  34. Bennett, C. H., & Brassard, G. Quantum Cryptography: Public Key Distribution and Coin Tossing. Proc.IEEE Int. Conf. On Computers, Systems and Signal Processing(Bangalore), 175–179 (IEEE, New York,1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Peng, K., Pan, Q., Zhang, J., Xie, C. (2003). Experimental Demonstration of Quantum Dense Coding and Quantum Cryptography with Continuous Variables. In: Braunstein, S.L., Pati, A.K. (eds) Quantum Information with Continuous Variables. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-1258-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-1258-9_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6255-0

  • Online ISBN: 978-94-015-1258-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics