Skip to main content

An overview of diverse responses to diverse processes at high crustal temperatures

  • Chapter
High-temperature Metamorphism and Crustal Anatexis

Part of the book series: The Mineralogical Society Series ((MIBS,volume 2))

Abstract

At the highest temperatures of regional metamorphism, crustal rocks undergo combinations of deformation, mineral reactions, partial melting, and geochemical transport processes. The scientific challenge goes beyond simple description of these processes, to the estimation of physical conditions (notably pressure, P and temperature, T), eventually leading to inferences about the tectonic régimes and heat sources responsible for the pressure-temperature-time (P-T-t) evolution of a region (from cold to hot followed by cooling and uplift to its present position at the Earth’s surface). This volume comprises reviews which explain the current state of progress towards these goals using different methods and in several different high-grade terranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aftalion, M., D. R. Bowes, B. Dash & T. J. Dempster 1988. Late Proterozoic charnockites in Orissa, India: a U-Pb and Rb-Sr isotopic study. Journal of Geology 96, 663–76.

    Article  Google Scholar 

  • Albarède, F. 1976. Thermal models of post-tectonic decompression as exemplified by the Haut-Allier granulites (Massif Central, France). Bulletin de la SociĂ©tĂ© GĂ©ologique de France 18, 1023–32.

    Google Scholar 

  • Allègre, C. J. & J. F. Minster 1978. Quantitative models of trace element behavior in magmatic processes. Earth and Planetary Science Letters 38, 1–25.

    Article  Google Scholar 

  • Arzi, A. A. 1978. Critical phenomena in the rheology of partially melted rocks. Tectonophysics 44, 173–84.

    Article  Google Scholar 

  • Ashworth, J. R. & E. L. McLellan 1985. Textures. In Migmatites, J. R. Ashworth (ed.) 180–203. Glasgow: Blackie.

    Chapter  Google Scholar 

  • Barbey, P., J.-M. Bertrand, S. Angoua & D. Dautel 1989. Petrology and U/Pb geochronology of the Telohat migmatites, Aleksod, Central Hoggar, Algeria. Contributions to Mineralogy and Petrology 101, 207–19.

    Article  Google Scholar 

  • Barr, D. 1985. Migmatites in the Moines. In Migmatites, J. R. Ashworth (ed.), 204–64. Glasgow: Blackie.

    Google Scholar 

  • Bohlen, S. R. 1987. Pressure-temperature-time paths and a tectonic model for the evolution of granulites. Journal of Geology 95, 617–32.

    Article  Google Scholar 

  • Bohlen, S. R. & K. Mezger 1989. Origin of granulite terranes and the formation of the iowermost continental crust. Science 244, 326–9.

    Article  Google Scholar 

  • Bowers, T. C. & H. C. Helgeson 1983. Calculation of the thermodynamic and geochemical consequences of non-ideal mixing in the system H2O-CO2-NaCl on phase relations in geologic systems: equation of state for F2O-CO2-NaCl fluids at high pressures and temperatures. Geochimica et Cosmochimica Acta 47, 1247–75.

    Article  Google Scholar 

  • Brown, M. 1988. P-T-t paths and melting in garnet-cordierite gneisses. Terra Cognita 8, 267.

    Google Scholar 

  • Brown, M. & M. M. Earle 1983. Cordierite-bearing schists and gneisses form Timor, eastern Indonesia: P—T conditions of metamorphism and tectonic implications. Journal of Metamorphic Geology 1, 183–203.

    Article  Google Scholar 

  • Clark, R. G. & J. B. Lyons 1986. Petrogenesis of the Kinsman intrusive suite: peraluminous granitoids of western New Hampshire. Journal of Petrology 27, 1365–93.

    Google Scholar 

  • Clemens J. D. & D. Vielzeuf 1987. Constraints on melting and magma production in the crust. Earth and Planetary Science Letters 86, 287–306.

    Article  Google Scholar 

  • Droop, G. T. R. & K. Bucher-Nurminen 1984. Reaction textures and metamorphic evolution of sapphirine-bearing granulites from the Gruf Complex, Italian central Alps. Journal of Petrology 25, 766–803.

    Google Scholar 

  • Ellis, D. J. 1987. Origin and evolution of granulites in normal and thickened crusts. Geology 15, 167–70.

    Article  Google Scholar 

  • England, P. C. & S. W. Richardson 1977. The influence of erosion upon the mineral facies of rocks from different metamorphic environments. Journal of the Geological Society of London 134, 201–13.

    Article  Google Scholar 

  • England, P. C. & A. B. Thompson 1984. Pressure-temperature-time paths of regional metamorphism. I. Heat transfer during the evolution of regions of thickened continental crust. Journal of Petrology 25, 894–928.

    Google Scholar 

  • Evans, N. H. & J. A. Speer 1984. Low-pressure metamorphism and anatexis of Carolina Slate Belt phyllites in the contact aureole of the Lilesville pluton, North Carolina, U.S.A. Contributions to Mineralogy and Petrology 87, 297–309.

    Article  Google Scholar 

  • Grant, J. A. 1985. Phase equilibria in partial melting of pelitic rocks. In Migmatites, J. R. Ashworth (ed.), 86–144. Glasgow: Blackie.

    Chapter  Google Scholar 

  • Harley, S. L. 1989. The origins of granulites: a metamorphic perspective. Geological Magazine 126, 215–47.

    Article  Google Scholar 

  • Harmon, R. S. & A. N. Halliday 1980. Oxygen and strontium isotope relationships in the British late Caledonian granites. Nature 283, 21–5.

    Article  Google Scholar 

  • Harris, N. B. W. & T. J. B. Holland 1984. The significance of cordierite-hypersthene assemblages from the Beitbridge region of the central Limpopo Belt: evidence for rapid decompression in the Archaean? American Mineralogist 69, 1036–49.

    Google Scholar 

  • Hensen, B. J. 1971. Theoretical phase relations involving cordierite and garnet in the system MgO-FeO-Al2O3-SiO2. Contributions to Mineralogy and Petrology 33, 191–214.

    Article  Google Scholar 

  • Hensen, B. J. & Y. Motoyoshi 1988. Sapphirine-quartz-orthopyroxene symplectites after cordierite in granulites from the Napier Complex, Antarctica: evidence for a counter-clockwise P-T path? Terra Cognita 8, 263.

    Google Scholar 

  • Hildreth, W. & S. Moorbath 1988. Crustal contributions to arc magmatism in the Andes of central Chile. Contributions to Mineralogy and Petrology 98, 455–89.

    Article  Google Scholar 

  • Hill, R. I., L. T. Silver & H. P. Taylor Jr. 1986. Coupled Sr-O isotope variations as an indicator of source heterogeneity for the northern Peninsular Ranges Batholith. Contributions to Mineralogy and Petrology 92, 351–61.

    Article  Google Scholar 

  • Hollister, L. S. 1982. Metamorphic evidence for rapid (2 mm/yr) uplift of a portion of the Central Gneiss Complex, Coast Mountains, B. C. Canadian Mineralogist 20, 319–32.

    Google Scholar 

  • Hollister, L. S. 1988. On the origin of C02-rich fluid inclusions in migmatites. Journal of Metamorphic Geology 6, 467–74.

    Article  Google Scholar 

  • Hollister, L. S. & M. L. Crawford 1986. Melt-enhanced deformation: a major tectonic process. Geology 14, 558–61.

    Article  Google Scholar 

  • Hutton, D. H. W. 1988. Granite emplacement mechanisms and tectonic controls: inferences from deformation studies. Transactions of the Royal Society of Edinburgh: Earth Sciences 79, 245–55.

    Article  Google Scholar 

  • Janardhan, A. S., R. C. Newton & J. V. Smith 1979. Ancient crustal metamorphism at low P H2O: charnockite formation at Kabbaldurga, South India. Nature 278, 511–14.

    Article  Google Scholar 

  • Janardhan, A. S., R. C. Newton & E. C. Hansen 1982. The transformation of amphibolite facies gneiss to charnockite in southern Karnataka and northern Tamil Nadu, India. Contributions to Mineralogy and Petrology 79, 130–49.

    Article  Google Scholar 

  • Jiang, J., R. N. Clayton & R. C. Newton 1988. Fluids in granulite facies metamorphism: a comparative oxygen isotope study on the South India and Adirondack high-grade terrains. Journal of Geology 96, 517–33.

    Article  Google Scholar 

  • Johannes, W. 1985. The significance of experimental studies for the formation of migmatites. In Migmatites, J. R. Ashworth (ed.), 36–85. Glasgow: Blackie.

    Chapter  Google Scholar 

  • Jones, K. A. & M. Brown 1990. A high temperature ‘clockwise’ P-T path and melting in the development of regional migmatites: An example from Southern Brittany, France. Journal of Metamorphic Geology 8, (in press).

    Google Scholar 

  • Lal, R. K., D. Ackermand & H. Upadhyay 1987. P-T-X relationships deduced from corona textures in sapphirine-spinel-quartz assemblages from Paderu, southern India. Journal of Petrology 28, 1139–68.

    Google Scholar 

  • van der Molen, I. & M. S. Paterson 1979. Experimental deformation of partially-melted granite. Contributions to Mineralogy and Petrology 70, 299–318.

    Article  Google Scholar 

  • Naslund, H. R. 1986. Disequilibrium partial melting and rheomorphic layer formation in the contact aureole of the Basistoppen Sill, East Greenland. Contributions to Mineralogy and Petrology 93, 359–67.

    Article  Google Scholar 

  • Peterson, J. W. & R. C. Newton 1989. CO2-enhanced melting of biotite-bearing rocks at deep-crustal pressure-temperature conditions. Nature 340, 378–80.

    Article  Google Scholar 

  • Pichavant, M. 1987. Effects of B and H2O on liquidus phase relations in the haplogranite system at 1 kbar. American Mineralogist 72, 1056–70.

    Google Scholar 

  • Powell, R. 1983. Fluids and melting under upper amphibolite facies conditions. Journal of the Geological Society of London 140, 629–33.

    Article  Google Scholar 

  • Price, R. C. & S. R. Taylor 1977. The rare earth element geochemistry of granite, gneiss and migmatite from the Western Metamorphic Belt of south-eastern Australia. Contributions to Mineralogy and Petrology 62, 249–63.

    Article  Google Scholar 

  • Pride, C. & G. K. Muecke 1982. Geochemistry and origin of granitic rocks, Scourian Complex, NW Scotland. Contributions to Mineralogy and Petrology 80, 379–85.

    Article  Google Scholar 

  • Rutter, M. J. & P. J. Wyllie 1988. Melting of vapour-absent tonalite at 10 kbar to simulate dehydration-melting in the deep crust. Nature 331, 159–60.

    Article  Google Scholar 

  • Sandiford, M. A. & R. Powell 1986. Deep crustal metamorphism during continental extension: modern and ancient examples. Earth and Planetary Science Letters 79, 151–8.

    Article  Google Scholar 

  • Sawyer, E. W. 1987. The role of partial melting and fractional crystallization in determining discordant migmatite leucosome compositions. Journal of Petrology 28, 445–73.

    Google Scholar 

  • Sawyer, E. W. & S.-J. Barnes 1988. Temporal and compositional difference between subsolidus and anatectic migmatite leucosomes from the Quetico metasedimentary belt, Canada. Journal of Metamorphic Geology 6, 437–50.

    Article  Google Scholar 

  • Sonder, L. J., P. C. England, B. P. Wernicke & R. L. Christiansen 1987. A physical model for Cenozoic extension of western North America. In Continental extensional tectonics, M. P. Coward, J. F. Dewey & P. L. Hancock (eds), 187–201. Geological Society of London Special Publication 28.

    Google Scholar 

  • Strachan, R. A., P. J. Treloar, M. Brown & R. S. D’Lemos 1989. Cadomian terrane tectonics and magmatism in the Armorican Massif. Journal of the Geological Society of London 146, 423–6.

    Article  Google Scholar 

  • Strong, D. F. & S. K. Hanmer 1981. The leucogranites of Southern Brittany: origin by faulting, frictional heating, fluid flux and fractional melting. Canadian Mineralogist 19, 163–76.

    Google Scholar 

  • Tait, R. E. & S. L. Harley 1988. Local processes involved in the generation of migmatites within mafic granulites. Transactions of the Royal Society of Edinburgh: Earth Sciences 79, 209–22.

    Article  Google Scholar 

  • Tracy, R. J. & P. Robinson 1983. Acadian migmatite types in pelitic rocks of Central Massachusetts. In Migmatites, melting and metamorphism, M. P. Atherton & C. D. Gribble (eds), 163–73. Nantwich, U.K.: Shiva.

    Google Scholar 

  • Wall, V. J., J. D. Clemens & D. B. Clarke 1987. Models for granitoid evolution and source composition. Journal of Geology 95, 731–49.

    Article  Google Scholar 

  • Warren, R. G. 1983. Metamorphic and tectonic evolution of granulites, Arunta Block, central Australia. Nature 305, 300–3.

    Article  Google Scholar 

  • Waters, D. J. 1988. Partial melting and the formation of granulite fades assemblages in Namaqualand, South Africa. Journal of Metamorphic Geology 6, 387–404.

    Article  Google Scholar 

  • Waters, D. J. & C. J. Whales 1984. Dehydration melting and the granulite transition in metapelites from southern Namaqualand, S. Africa. Contributions to Mineralogy and Petrology 88, 269–75.

    Article  Google Scholar 

  • Wells, P. R. A. 1980. Thermal models for the magmatic accretion and subsequent metamorphism of continental crust. Earth and Planetary Science Letters 46, 253–65.

    Article  Google Scholar 

  • Wendlandt, R. F. 1981. Influence of CO2 on melting of model granulite facies assemblages: a model for the genesis of charnockites. American Mineralogist 66, 1164–74.

    Google Scholar 

  • Wickham, S. M. 1987. The segregation and emplacement of granitic magmas. Journal of the Geological Society of London 144, 281–97.

    Article  Google Scholar 

  • Wickham, S. M. & H. P. Taylor Jr. 1985. Stable isotope evidence for large scale seawater infiltration in a regional metamorphic terrane; the Trois Seigneurs Massif, Pyrenees, France. Contributions to Mineralogy and Petrology 91, 122–37.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 J.R. Ashworth, M. Brown & contributors

About this chapter

Cite this chapter

Ashworth, J.R., Brown, M. (1990). An overview of diverse responses to diverse processes at high crustal temperatures. In: Ashworth, J.R., Brown, M. (eds) High-temperature Metamorphism and Crustal Anatexis. The Mineralogical Society Series, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-3929-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-3929-6_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-3931-9

  • Online ISBN: 978-94-015-3929-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics