Skip to main content

Large-eddy simulation of MHD turbulent channel flow under a uniform magnetic field

  • Chapter
Turbulence and Coherent Structures

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 2))

  • 373 Accesses

Abstract

Liquid metals such as mercury are weakly electrically-conducting fluids, and their motions are described by magnetohydrodynamics. These magnetohydrodynamic (MHD) fluids have many applications to engineering devices: their dynamics are very important in designing liquid metal pumps, electromagnetic flow meters, MHD power generators (Yakhot & Branover 1982), liquid metal heat exchangers in nuclear fusion reactors (Shercliff 1979), and some kinds of crystal pullers (Hjellming & Walker 1987). For pure scientific research, these MHD fluids are known to be good candidates to make two-dimensional turbulence in laboratory experiments (Schumann 1976; Sommeria &Moreau 1982).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bradshaw, P., Cebeci, T. & Whitelaw, J.H. 1981 Engineering Calculation Methods for Turbulent Flow. Academic.

    Google Scholar 

  • Brouillette, E.C. & Lykoudis, P.S. 1967 Magneto-fluid-mechanic channel flow. I. Experiment. Phys. Fluids 10, 995–1001.

    Google Scholar 

  • Hjellming, L.N. & Walker, J.S. 1987 Melt motion in a Czochralski crystal puller with an axial magnetic field: motion due to buoyancy and thermocapillarity. J. Fluid Mech. 182, 335–368.

    Article  ADS  MATH  Google Scholar 

  • Horiuti, K. 1987 Comparison of conservative and rotational forms in large eddy simulation of turbulent channel flow. J. Comput. Phys 71, 343–370.

    Google Scholar 

  • Kline, S.J., Reynolds, W.C., Schraub, F.A. & Runstadler, P.W. 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30, 741–773.

    Article  ADS  Google Scholar 

  • Moin, P. & Kim, J. 1982 Numerical investigation of turbulent channel flow. J. Fluid Mech. 118, 341–377.

    Article  ADS  MATH  Google Scholar 

  • Moin, P. & Kim, J. 1985 The structure of the vorticity field in turbulent channel flow. Part 1. Analysis of instantaneous fields and statistical correlations. J. Fluid Mech. 155, 441–464.

    Google Scholar 

  • Rogallo, R.S. & Moin, P. 1984 Numerical simulation of turbulent flows. Ann. Rev. Fluid Mech. 16, 99–137.

    Google Scholar 

  • Schumann, U. 1976 Numerical simulation of the transition from three-to two-dimensional turbulence under a uniform magnetic field. J. Fluid Mech. 74, 31–58.

    Article  ADS  MATH  Google Scholar 

  • Shercliff, J.A. 1979 Thermoelectric magnetohydrodynamics. J. Fluid Mech. 91, 231–251.

    Article  ADS  MATH  Google Scholar 

  • Shimomura, Y. 1988 Statistical analysis of magnetohydrodynamic turbulent shear flows at low magnetic Reynolds number. J. Phys. Soc. Jpn. 57, 2365–2385.

    Google Scholar 

  • Sommeria, J. & Moreau, R. 1982 Why, how, and when, MHD turbulence becomes two-dimensional. J. Fluid Mech. 118, 507–518.

    Google Scholar 

  • Speziale, C.G. 1985 Galilean invariance of subgrid-scale stress models in the large-eddy simulation of turbulence. J. Fluid Mech. 156, 55–62.

    Article  ADS  MATH  Google Scholar 

  • Willmarth, W.W. & Tu, B.J. 1967 Structure of turbulence in the boundary layer near the wall. Phys. Fluids 10, S134 - S137.

    Article  ADS  Google Scholar 

  • Yakhot, A. & Branover, H. 1982 An analytical model of a two-phase liquid metal magnetohydrodynamic generator. Phys. Fluids 25, 446–451

    Google Scholar 

  • Yoshizawa, A. 1984 Statistical analysis of the deviation of the Reynolds stress from its eddy viscosity representation. Phys. Fluids 27, 1377–1387.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shimomura, Y. (1991). Large-eddy simulation of MHD turbulent channel flow under a uniform magnetic field. In: Metais, O., Lesieur, M. (eds) Turbulence and Coherent Structures. Fluid Mechanics and Its Applications, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-7904-9_33

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-7904-9_33

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4063-3

  • Online ISBN: 978-94-015-7904-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics