Skip to main content

Probabilistic Inference in Artificial Intelligence: The Method of Bayesian Networks

  • Chapter
Philosophy of Probability

Part of the book series: Philosophical Studies Series ((PSSP,volume 56))

Abstract

Bayesian networks are formalisms which associate a graphical representation of causal relationships and an associated probabilistic model. They allow to specify easily a consistent probabilistic model from a set of local conditional probabilities. In order to infer the probabilities of some facts, given observations, inference algorithms have to be used, since the size of the probabilistic models is usually large. Several such inference methods are described and illustrated. Less advanced related problems, namely learning, validation, continuous variables, and time, are briefly discussed. Finally, the relationships between the field of Bayesian networks and other scientific domains are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen, S.K., Olesen, K.G., Jensen, F.V., and Jensen, F. (1989) HUGIN-a shell for building Bayesian belief universes for expert systems, Proc. IJCAI 89, Detroit, MI, Morgan-Kaufmann.

    Google Scholar 

  • Anderson, J.A., and Rosenfeld, E. (1988) Neurocomputing. Foundation of Research, MIT Press, Cambridge, MA.

    Google Scholar 

  • Berzuini, C. (1990) Representing time in causal probabilistic networks. In: Uncertainty in Artificial Intelligence 5, (M. Henrion, R.D. Shachter, L.N. Kanal, and J.F. Lemmer eds.), North-Holland, Amsterdam, p. 15–28.

    Google Scholar 

  • Besag, J. (1974) Spatial interaction and the statistical analysis of lattice systems (with discussion), J. Royal Statist. Soc. B., 36, 192–326.

    Google Scholar 

  • Cheeseman, P.C. (1983) A method for computing generalized Bayesian probability values for expert systems. Proc. Eighth International Conference on Artificial Intelligence, Karlsruhe, 198–202.

    Google Scholar 

  • Cui, W., and Blocley, D.I. (1990) Interval Probability Theory for Evidential Support, Intern. J. of Intelligent Systems, 5, 183–192.

    Article  Google Scholar 

  • Darroch, J.N., Lauritzen, S.L., and Speed, T.P. (1980) Markov fields and log-linear interaction models for contingency tables. The Annals of Statistics, 8, p. 522–539.

    Article  Google Scholar 

  • Dean, T., and Kanazawa, K. (1988) Probabilistic temporal reasoning. In: Proc. AAAI 88, 524–528.

    Google Scholar 

  • Dechter, R., and Pearl, J. (1989) Tree Clustering for Constraint Networks (Research Note), Artificial Intelligence, 38, 353–366.

    Article  Google Scholar 

  • Dempster, A.P., and Kong, A. (1988) Uncertain evidence and artificial analysis, Research Report S-120, Dept. of Statistics, Harvard University, Cambridge, Massachusetts.

    Google Scholar 

  • Dubois, D., and Prade, H. (1990) Inference in Possibilistic Hypergraphs. Proc. Third International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, Paris, 228–230.

    Google Scholar 

  • Dubois, D., Prade, H., et Toucas, J.M. (1991) Inference with emprecise numerical quantifiers, to appear in: “Intelligent systems: state of the art and future directions,” (Z. Ras et M. Zemanka eds.), Ellis Horwood Ltd.

    Google Scholar 

  • Edwards, D., and Kreiner, S. (1983) The analysis of contingency tables by graphical models, 70, Biometrika 553–565.

    Google Scholar 

  • Frydenberg, M., and Lauritzen, S.L. (1989) Decomposition of maximum likelihood in mixed graphical interaction models, Biometrika, 76, 539–555.

    Article  Google Scholar 

  • Geman, S., and Geman, D. (1984) Stochastic relaxations, Gibbs distributions and the Bayesian restauration of images, IEEE Transaction on Pattern Analysis and Machine Intelligence, 6, 721–742.

    Article  Google Scholar 

  • Goldman, S.A., and Rivest, R.L. (1988) A non-iterative maximum entropy algorithm. In: Uncertainty in Artificial Intelligence 2, (J.D. Lemmer and L.N. Kanal eds.), Elsevier Science Publishers, North-Holland, 133–148.

    Google Scholar 

  • Golmard, J.L. (1988) An approach to uncertain reasoning based on a probabilistic model. Proc. “Expert systems and their applications, ” Avignon, France, p. 97–116, EC2, (in French).

    Google Scholar 

  • Golmard, J.L., and Mallet, A. (1989) Learning probabilities in causal trees form incomplete databases. Proc. LTCAI-89 Workshop on Knowledge Discovery in Databases, (G. Piatetsky-Shapiro and W. Frawley eds.), Detroit, MI, p. 117–126. Revised version in: (1991) Revue d’Intelligence Artificielle, 5, 93–106.

    Google Scholar 

  • Groshof, B.N. (1986) An inequality paradigm for probabilistic knowledge-The logic of conditional probability intervals. In: Uncertainty in Artificial Intelligence, (L.N. Kanal and J.F. Lemmer eds.), North-Holland, Amsterdam, p. 259–275.

    Google Scholar 

  • Halpern, J.Y., and Rabin, M. (1987) A logic to reason about likelihood, Artificial Intelligence, 32, 379–406.

    Article  Google Scholar 

  • Henrion, M. (1988) Propagating uncertainty in Bayesian networks by probabilistic logic sampling. In: Uncertainty in Artificial Intelligence 2, (J.F. Lemmer and L.N. Kanal eds.), Elsevier Science Publishers, North-Holland, 149–163.

    Google Scholar 

  • Jaynes, E.T. (1982) On the rationale of maximum entropy methods, Proc. IEEE, 70, 939–952.

    Article  Google Scholar 

  • Jensen, F.V. (1988) Discussion of [Lauritzen and Spiegelhalter 1988].

    Google Scholar 

  • Jensen, F.V., Olesen, K.G., and Andersen, S.K. (1990) An algebra of Bayesian belief universes for knowledge based systems. Networks, 20, 637–659.

    Article  Google Scholar 

  • Kanal, L.N., and Lemmer, J.F., eds. (1986) Uncertainty in Artificial Intelligence, North-Holland, Amsterdam.

    Google Scholar 

  • Kim, J. and Pearl, J. (1983) A computational model for causal and diagnostic reasoning in inference systems. Proc. IJCAI 83, Karlsruhe, 190–193.

    Google Scholar 

  • Kjaerulff, U. (1990) Triangulation of graphs-allgorithms giving small total state space, Technical report R-90–09, Aalborg University, Aalborg.

    Google Scholar 

  • Laskey, K.B. (1990) Adapting Connectionist Learning to Bayes Networks, Int. J. of Approx. Reasoning, 4, 261–282.

    Article  Google Scholar 

  • Lauritzen, S.L., Speed, T.P., and Vijayan, K. (1984) Decomposable graphs and hypergraphs, Journal of the Australian Mathematical Society, A, 36, 12–29.

    Article  Google Scholar 

  • Lauritzen, S.L., and Spiegelhalter, D.J. (1988) Local computations with probabilities on graphical structures and their application to expert systems (with discussion). J. Royal Statist. Soc. B, 50, 157–224.

    Google Scholar 

  • Levey, H., Low, D.W. (1983) A new algorithm for finding small cycle cutsets, Rept. G 320–2721, IBM Los Angeles Scientific Center, Los Angeles, CA.

    Google Scholar 

  • Maier, D. (1983) The theory of Relational databases. Computer Science Press.

    Google Scholar 

  • Paris, J.B., and Vencovska, A. (1988) On the applicability of maximum entropy to inexact reasoning, Int. J. of Approx. Reasoning, 3, 1–34.

    Article  Google Scholar 

  • Paris, J.B., and Vencovska, A. (1990) A note on the inevitability of maximum entropy, Int. J. of Approx. Reasoning, 4, 183–223.

    Article  Google Scholar 

  • Pearl J. (1986) Fusion, propagation and structuring in belief networks, Artificial Intelligence, 29, 241–288.

    Article  Google Scholar 

  • Pearl, J. (1987a) Evidential reasoning using stochastic simulation of causal models (Research note), Artificial Intelligence, 32, 245–258.

    Article  Google Scholar 

  • Pearl, J. (1987b) Distributed revision of composite beliefs, Artificial Intelligence, 33, 173–215.

    Article  Google Scholar 

  • Pearl, J. (1988) Probabilistic reasoning in intelligent systems, Morgan Kaufmann, San Mateo.

    Google Scholar 

  • Pitarelli, M. (1990) Probabilistic databases for decision analysis, Int. J. of Intell. Systems, 5, 209–236.

    Article  Google Scholar 

  • Roizen, I., and Pearl, J. (1986) Learning Link-Probabilities in Causal Trees. Proc. Second Workshop on Uncertainty in Artificial Intelligence, Philadelphia, PA, p. 211–214.

    Google Scholar 

  • Shafer, G., Shenoy, P.P., and Mellouli, K. (1987) Propagating belief functions in qualitative Markov trees, Intern. J. of Approx. Reasoning, 1, 349–400.

    Article  Google Scholar 

  • Shenoy, P.O., and Shafer, G. (1990) Axioms for probability and belief-function propagation. In: Uncertainty in Artificial Intelligence 4, (R.D. Shachter, T.S. Levitt, L.N. Kanal, and J.F. Lemmer eds.), North-Holland, Amsterdam.

    Google Scholar 

  • Smets, P. (1988) Discussion of [Lauritzen and Spiegelhalter 1988].

    Google Scholar 

  • Spiegelhalter, D.J. (1986) Probabilistic reasoning in predictive expert systems. In: Uncertainty in Artificial Intelligence, (L.N. Kanal and J.F. Lemmer eds.), Elsevier Science Publisher, North-Holland, 47–67.

    Google Scholar 

  • Spiegelhalter, D.J., and Lauritzen, S.L. (1990) Sequential updating of conditional probabilities on directed graphical structures, Networks, 20, 579–605.

    Article  Google Scholar 

  • Suermondt, H.J., and Cooper, G.F. (1990) Probabilistic Inference in Multiply Connected Belief Networks using Loop Cutsets, Int. J. of Approx. Reasoning, 4, 283–306.

    Article  Google Scholar 

  • Tarjan, R.E. and Yannakakis, M. (1984) Simple linear-time algorithms to test chordiality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclics hypergraphs, SIAM J. Comput., 13, 566–579.

    Article  Google Scholar 

  • Wermuth, N. and Lauritzen, S.L. (1983) Graphical and recursive models for contingency tables. Biometrika, 70, 537–552.

    Article  Google Scholar 

  • Zarley, D., Hsia, Y.T., and Shafer, G. (1988) Evidential reasoning using DELIEF. Proc. AAAI 88, Morgan Kaufmann, 205–209.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Golmard, JL. (1993). Probabilistic Inference in Artificial Intelligence: The Method of Bayesian Networks. In: Dubucs, JP. (eds) Philosophy of Probability. Philosophical Studies Series, vol 56. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8208-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8208-7_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4301-6

  • Online ISBN: 978-94-015-8208-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics