Skip to main content

Dual Basis of Screw-Vectors for Inverse Kinestatic Problems in Robotics

  • Chapter
Advances in Robot Kinematics and Computational Geometry

Abstract

This paper introduces dual bases of screw-vectors, which are associated with the dual spaces of wrenches and twists. Dual bases are required in order to express general coordinates functions and transformations of screw-vectors. Analytical and geometrical methods for determining dual bases are proposed and applied to inverse kinestatic problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. H. Hunt, Kinematic Geometry of Mechanisms. Oxford University Press, Oxford (1978).

    Google Scholar 

  2. J. Phillips, Freedom in Machinery - II. Screw Theory Exemplified, Cambridge University Press. Cambridge (1990).

    Google Scholar 

  3. H. Lipkin, Geomety and mappings of screws with applications to the hybrid control of robotic manipulators. PhD dissertation. University of Florida (1985).

    Google Scholar 

  4. J.-M. Hervé. “Intrinsic formulation of problems of geometry and kinematics”, Mechanism and Machine Theory, 17(3), 179–184 (1982).

    Google Scholar 

  5. J.-M. Hervé. “The mathematical group structure of the set of displacements”, Mechanisms and Machine Theory, 29(4 73–81 (1994).

    Google Scholar 

  6. A. Karger and J. Novak. Space Kinematics and Lie Groups, translated by M. Basch. from Czech publication: Prostornvà Kinematika a Lieovy Grupy. (SNTL, Prague. Czechoslovakia, (1978)) Gordon and Breach Pub.. New York (1985).

    Google Scholar 

  7. J. M. Selig and J. Rooney. “Reuleaux pairs and surfaces that cannot be gripped”. The Int. J. of Robotics Researrh, 8(5), 79–87 (1989).

    Google Scholar 

  8. A. E. Samuel. P. R. MacAree and K. H. Hunt, “Unifying screw geometry and matrix transformations”. Int. J. Robotics Research. 10(5). 454–472 (1991).

    Google Scholar 

  9. L. Brand. Vector and Tensor Analysis, John Wiley & Sons Publishing. New York, (1947).

    MATH  Google Scholar 

  10. J. Angeles, Rational Kinematics. Springer Tracts in Natural Philosophy. vol. 34, ( C. Truesdell Eds.), Springer Verlag, New York (1988).

    Google Scholar 

  11. J. M. MacCarthy. Introduction to theoretical kinematics, J. Wiley & Sons, Chichester. (1990)

    Google Scholar 

  12. F. M. Dimentberg. The screw Calculus and its Application in Mechanics. Translated and reproduced by the Clearinghouse for Federal Scientific and Technical Information, Va. 22151, Document N. FTD-HT-23–1632. Springfield (1965).

    Google Scholar 

  13. K.J. Waldron. “The use of motors in spatial kinematics”. Proc. of IFToMM Int. Symp. on Linkages and Computer Design Methods. vol. B, 535–545. Bucharest (1973).

    Google Scholar 

  14. A. T. Yang. “Calculus of screws”. Basic Questions of Design Theory (W R. Spitler Ed.). 265–281, North-Holland, Amsterdam (1974).

    Google Scholar 

  15. J. A. Parkin. “Co-ordinate transformations of screws with applications to screw systems and finite twists”. Mechanism and Machine Theory, 25 (6). 489–478 (1990).

    Article  Google Scholar 

  16. L. Woo and F Freudenstein. “Application of line geometry to theoretical kinematic analysis of mechanical”. J. of Mechanisms. 5(3). 417–460 (1970).

    Google Scholar 

  17. K. J. Waldron. S.-L. Wang and S. J. Bolin, “A study of the jacobian matrix of serial manipulators”. ASME J. of Mechanisms, Transmissions, and Automation in Design. 111. 230–237, (1985).

    Google Scholar 

  18. K. H. Hunt. “Special configurations of robot arms via screw theory–part I: The jacobian and matrix of cofactors”. Robotica. 4. 171–179 (1986).

    Google Scholar 

  19. K. J. Waldron and K. H. Hunt. “Series-parallel dualities in actively coordinated mechanism”. Robotics Research. 10(5). 473–480 (1991).

    Google Scholar 

  20. M. Renaud. Contribution à la Modélisation et à la Commande Dynamique des Robots Manipula-tents. Thèse d’état. Université Paul Sabatier de Toulouse (1980)

    Google Scholar 

  21. K. Sugimoto and J. Duffy. “Application of linear algebra to screw systems”, Mechanism and Machine Theory, 17 (1). 73–83 (1982).

    Article  Google Scholar 

  22. G. R. Pennock and B. C. Viestra. “The inverse kinematics of a three-cylindric robot”. Int. J. of Robotics Research. 9 (4). 75–85 (1990).

    Article  Google Scholar 

  23. J.-P. Merlet. “Singular configurations of parallel manipulators and Grassmann geometry”. The Inn. J. of Robotics Research. 8(5), 45–56 (1989).

    Google Scholar 

  24. J.-P. Merlet. Les rabots parallèles. éditions Hermes. Paris (1990).

    Google Scholar 

  25. Agrawal S. K. and Roth B.. “Statics of in-parallel manipulators systems”. ASME J. of Mechanical Design. 114(4), 564–568. (1992).

    Google Scholar 

  26. V. Kumar. “Instantaneous kinematics of parallel-chain robotic mechanisms”. ASME J. of Mechanical Design. 114(3). 349–358, (1992).

    Google Scholar 

  27. C. Bidard, “Screw-vector bond graphs for multibody systems modelling”. Int. Conf. on Bond Graph Modeling, Proc. of the Western Simulation Multiconference, 195–200, SCS. San Diego (1993).

    Google Scholar 

  28. C. Bidard, Graphes de liaisons torsoriels pour la modélisation et l’analyse ciné-statique des mécanismes de rabots. Thèse de Doctorat. Université de Lyon. to be presented in (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bidard, C. (1994). Dual Basis of Screw-Vectors for Inverse Kinestatic Problems in Robotics. In: Lenarčič, J., Ravani, B. (eds) Advances in Robot Kinematics and Computational Geometry. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8348-0_34

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8348-0_34

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4434-1

  • Online ISBN: 978-94-015-8348-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics