Skip to main content

Ab initio Studies of Reaction Paths in Excited-State Hydrogen-Transfer Processes

  • Chapter
The Reaction Path in Chemistry: Current Approaches and Perspectives

Part of the book series: Understanding Chemical Reactivity ((UCRE,volume 16))

Abstract

The reaction path concept is nowadays widely employed for the qualitative characterization of chemical reaction dynamics, see [1–3] for reviews. The availability of analytic energy gradients in ab initio calculations, in particular at the self-consistentfield (SCF) and second-order Moller- Plesset (MP2) levels, has allowed the systematic determination of reaction paths even for relatively large polyatomic systems [2]. Nearly all of these applications have been concerned with the potential-energy (PE) surface of the electronic ground state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. G. Mezey, Potential Energy Hypersurfaces, in Studies in Physical and Theoretical Chemistry, Vol. 53, Elsevier, Amsterdam, 1987

    Google Scholar 

  2. H. B. Schlegel, Adv. Chem. Phys. 67, 249 (1987)

    Article  CAS  Google Scholar 

  3. D. Heidrich, W. Kliesch and W. Quapp, Properties of Chemically Interesting Potential Energy Surfaces, in Lecture Notes in Chemistry, Vol. 56, Springer, Berlin, 1991

    Google Scholar 

  4. J. Michl and V. Bondacic-Koutecky, in Electronic Aspects of Organic Photochemistry, Willey, New York, 1990

    Google Scholar 

  5. G. Herzberg and H. C. Longuet-Higgins, Discuss. Faraday Soc. 35, 77 (1963)

    Article  Google Scholar 

  6. T. Carrington, Acc. Chem. Res. 7, 20 (1974)

    Article  CAS  Google Scholar 

  7. L. Salem, J. Am. Chem. Soc. 96, 3486 (1974)

    Article  CAS  Google Scholar 

  8. F. T. Smith, Phys. Rev. 179, 111 (1969)

    Article  Google Scholar 

  9. C. A. Mead and D. G. Truhlar, J. Chem. Phys. 70, 2284 (1979)

    Article  CAS  Google Scholar 

  10. C. A. Mead and D. G. Truhlar, ibid 77, 6090 (1982)

    Article  CAS  Google Scholar 

  11. C. A. Mead, Rev. Mod. Phys. 64, 51 (1992)

    Article  CAS  Google Scholar 

  12. T. Pacher, L. S. Cederbaum and H. Köppel, Adv. Chem. Phys. 84, 293 (1993)

    Article  CAS  Google Scholar 

  13. I. B. Bersuker and V. Z. Polinger, Vibronic Interactions in Molecules and Crystals, Wiley, New York, 1989

    Book  Google Scholar 

  14. S. J. Formosinho and L. G. Arnaut, J. Photochem. Photobiol. A75, 21 (1993)

    Article  Google Scholar 

  15. E. M. Kosower and D. Huppert, Ann. Rev. Phys. Chem. 37, 127 (1986)

    Article  CAS  Google Scholar 

  16. M. Kasha, J. Chem. Soc. Faraday Trans. II 82, 2379 (1986)

    Article  CAS  Google Scholar 

  17. P. F. Barbara and H. P. Trommsdorff, eds. Special Issue on Spectroscopy and Dynamics of Elementary Proton Transfer in Polyatomic Systems, Chem. Phys. 136, 152–360 (1989)

    Google Scholar 

  18. Special Issue (M. Kasha Festschrift) J. Phys. Chem. 95, 10220–10524 (1991)

    Article  Google Scholar 

  19. J. Calatan and J. I. Fernandez-Alonso, J. Mol. Struct. 27, 59 (1975)

    Article  Google Scholar 

  20. W. Orttung, G. W. Scott and D. Vosooghi, J. Mol. Struct. 109, 161 (1984)

    Article  Google Scholar 

  21. K. L. Kunze and J. R. de la Vega, J. Am. Chem. Soc. 106, 6528 (1984)

    Article  CAS  Google Scholar 

  22. H. Tanaka and K. Nishimoto, J. Phys. Chem. 88, 1052 (1988)

    Article  Google Scholar 

  23. J. Waluk, H. Bulska, A. Grabowska and A. Mordzinski, New J. Chem. 10, 413 (1086)

    Google Scholar 

  24. S. Nagaoka and U. Nagashima, Chem. Phys. 136, 152 (1989)

    Article  Google Scholar 

  25. B. Dick, J. Phys. Chem. 94, 5752 (1990)

    Article  CAS  Google Scholar 

  26. N. P. Ernsting, LH. Arthen-Engeland, M. A. Rodriguez and W. Thiel, J. Chem. Phys. 97, 3914 (1992)

    Article  CAS  Google Scholar 

  27. X. Duan and S. Scheiner, Chem. Phys. Lett. 204, 36 (1993)

    Article  CAS  Google Scholar 

  28. V. Barone and C. Adamo, Chem. Phys. Lett. 226, 399 (1994)

    Article  CAS  Google Scholar 

  29. B. O. Roos, Adv. Quantum Chem. 69, 399 (1987)

    CAS  Google Scholar 

  30. K. Andersson, P.-A. Malmqvist, B. O. Roos, A. J. Sadlej and K. J. Wolinski, J. Phys. Chem. 94, 5483 (1990);

    Article  CAS  Google Scholar 

  31. K. Andersson, P.-A. Malmqvist and B. O. Roos, J. Chem. Phys. 96, 1218 (1992)

    Article  CAS  Google Scholar 

  32. A. L. Sobolewski and W. Domcke, Chem. Phys. Lett. 211, 82 (1993)

    Article  CAS  Google Scholar 

  33. A. L. Sobolewski and W. Domcke, Chem. Phys. 184, 115 (1994)

    Article  CAS  Google Scholar 

  34. A. L. Sobolewski and L. Adamowicz, Chem. Phys., in press.

    Google Scholar 

  35. A. L. Sobolewski and L. Adamowicz, J. Phys. Chem., submitted.

    Google Scholar 

  36. A. L. Sobolewski and L. Adamowicz, J. Chem. Phys., in press.

    Google Scholar 

  37. A. L. Sobolewski and L. Adamowicz, Chem. Phys. Lett., in press.

    Google Scholar 

  38. A. L. Sobolewski, Chem. Phys. Lett. 211, 293 (1993)

    Article  CAS  Google Scholar 

  39. A. L. Sobolewski, J. Photochem. Photobiol., in press

    Google Scholar 

  40. W. H. Miller, B. A. Ruf and Y. -T. Chang, J. Chem. Phys. 89, 6298 (1988)

    Article  CAS  Google Scholar 

  41. K. Fukui, Acc. Chem. Res. 14, 363 (1981)

    Article  CAS  Google Scholar 

  42. W. H. Miller, N. C. Handy and J. E. Adams, J. Chem. Phys. 72, 94 (1980)

    Google Scholar 

  43. J. Heldt, D. Gormin and M. Kasha, Chem. Phys. 136, 321 (1989)

    Article  CAS  Google Scholar 

  44. M. J. Nowak, J. Fulara and L. Lapinski, J. Mol. Str. 175, 91 (1988);

    Article  CAS  Google Scholar 

  45. M.J. Nowak, L. Lapinski and J. Fulara, Spectrochimica Acta, 45A, 229 (1989);

    Google Scholar 

  46. L. Lapinski, J. Fulara and M.J. Nowak, Spectrochimica Acta , 46A, 61 (1990);

    CAS  Google Scholar 

  47. L. Lapinski, J. Fulara, R. Czerminski and M.J. Nowak, Spectrochimica Acta, 46A, 1087 (1990);

    CAS  Google Scholar 

  48. L. Lapinski, M.J. Nowak, J. Fulara, A. Les and L. Adamowicz, J. Physical Chemistry, 94, 6555 (1990);

    Article  CAS  Google Scholar 

  49. M.J. Nowak, L. Lapinski, H. Rostkowska, A. Les and A. Adamowicz, J. Phys Chem., 94, 7406 (1990);

    Article  CAS  Google Scholar 

  50. M.J. Nowak, L. Lapinski, J. Fulara, A. Les and L. Adamowicz, J. Phys. Chem., 95, 2404 (1991);

    Article  CAS  Google Scholar 

  51. H. Vranken, J. Smets, G. Maes, L. Lapinski, M.J. Nowak and L. Adamowicz, Spectrochimica Acta 50A, 875 (1994);

    CAS  Google Scholar 

  52. M. J. Nowak, L. Lapinski, J. Fulara, A. Les and L. Adamowicz, J. Chem. Phys. 96, 1562 (1992)

    Article  CAS  Google Scholar 

  53. T. Carrington and W. H. Miller, J. Chem. Phys. 84, 4364 (1986)

    Article  CAS  Google Scholar 

  54. R. Rossetti, R. Rayford, R. C. Haddon and L. E. Brus, J. Am. Chem. Soc. 103, 4303 (1981)

    Article  CAS  Google Scholar 

  55. H. C. Longuet-Higgins, in Advances in Spectroscopy, Vol.2, H. W. Thompson (ed.), Interscience, New York, 1961, p.429

    Google Scholar 

  56. H. Köppel, W. Domcke and L. S. Cederbaum, Adv. Chem. Phys. 57, 59 (1984)

    Article  Google Scholar 

  57. S. Nagaoka, N. Hirota, M. Sumitami and K. Yoshihara, J. Am. Chem. Soc. 94, 488 (1983)

    Google Scholar 

  58. S. Nagaoka, U. Nagashima, Chem. Phys. 136, 153 (1989)

    Article  CAS  Google Scholar 

  59. J. Catalan, F. Toribio and A. U. Acuna, J. Phys. Chem. 86, 303 (1982)

    Article  CAS  Google Scholar 

  60. P. -T. Chou, M. Chao, J. H. Clements, M. L. Martinez and C. -P. Chang, Chem. Phys. Lett. 220, 229 (1994)

    Article  CAS  Google Scholar 

  61. L. Lapinski, R. Czerminski, M. J. Nowak and J. Fulara, J. Mol. Struct. 220, 147 (1990)

    Article  CAS  Google Scholar 

  62. J. Smets, PhD thesis, Leuven, 1993.

    Google Scholar 

  63. R. D. Brown, P. D. Godfrey, D. McNaughton and A. P. Pierlot, J. Am. Chem. Soc. 111, 2308 (1988);

    Article  Google Scholar 

  64. M. Szczesniak, K. Szczepaniak, J. S. Kwiatkowski, K. KuBulat and W. B. Person, ibid 110, 8319 (1988)

    Article  CAS  Google Scholar 

  65. M. Dreyfus, O. Bensaude, G. Dodin and J. E. Dubois, J. Am. Chem. Soc. 98, 6338 (1976)

    Article  CAS  Google Scholar 

  66. M. J. Scanlan and I. H. Hiller, Chem. Phys. Lett. 107, 330 (1984)

    Article  CAS  Google Scholar 

  67. M. Moreno and W. H. Miller, Chem. Phys. Lett. 171, 475 (1990)

    Article  CAS  Google Scholar 

  68. S. Kato, J. Cheim. Phys. 88 (1988) 3045.

    Article  CAS  Google Scholar 

  69. A. L. Sobolewski and W. Domcke, Chem. Phys. Lett. 180, 381 (1991)

    Article  CAS  Google Scholar 

  70. A. L. Sobolewski, C. Woywod and W. Domcke, J. Chem. Phys. 98, 5627 (1993)

    Article  CAS  Google Scholar 

  71. W. Domcke, A. L. Sobolewski and C. Woywod, Chem. Phys. Lett. 203, 220 (1993)

    Article  CAS  Google Scholar 

  72. A. L. Sobolewski, J. Chem. Phys. 93, 6433 (1990)

    Article  CAS  Google Scholar 

  73. P. F. Barbara, P. M. Rentzepis and L. E. Brus, J. Am. Chem. Soc. 102, 2786 (1980)

    Article  CAS  Google Scholar 

  74. C. Woywod, W. Domcke, A. L. Sobolewski and H.-J. Werner, J. Chem. Phys. 100, 1400 (1994)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sobolewski, A.L., Domcke, W. (1995). Ab initio Studies of Reaction Paths in Excited-State Hydrogen-Transfer Processes. In: Heidrich, D. (eds) The Reaction Path in Chemistry: Current Approaches and Perspectives. Understanding Chemical Reactivity, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8539-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8539-2_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4586-7

  • Online ISBN: 978-94-015-8539-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics