Skip to main content

Part of the book series: ERCOFTAC Series ((ERCO,volume 1))

Abstract

The boundary layer is defined as the lowest part of the atmosphere. In it meteorological variables, such as wind velocity, temperature and humidity, adjust from their values in the free-atmosphere to the boundary conditions at the earth’s surface. These boundary conditions are the no-slip condition for the velocity and for heat and humidity imposed surface fluxes. The theory of the atmospheric boundary layer should provide us with the vertical profiles of these meteorological variables and their fluxes. It will be clear these profiles will depend strongly on the process that determines vertical transport in the boundary layer. This process is turbulence. Therefore, the study of the atmospheric boundary layer is almost synonym with a study of atmospheric turbulence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arya, S.P. 1988 Introduction to micrometeorology. Vol 42. International Geophysics Series, Academic Press, New York, U.S.A.

    Google Scholar 

  2. Andren A., Brown A., Graf J., Mason P.J., Moeng C.-H., Nieuwstadt.F.T.M. and Schumann U. 1994. Large eddy simulation of a neutrally stratified boundary layer: a comparison of four computer codes. Submitted to Q. J. R. Meteorol. Soc..

    Google Scholar 

  3. Briggs G.A. 1988. Analysis of diffusion field experiments. In Lectures on air pollution modelling (eds. A. Venkatram and J.C. Wyngaard ), American Meteorological Society, Boston, U.S.A., pp 62–117.

    Google Scholar 

  4. Fleagle R.G. and Businger J.A. 1980. An introduction to Atmospheric Physics. Academic Press, Orlando, Fla., U.S.A.

    Google Scholar 

  5. Holtslag A.A.M and Nieuwstadt, F.T.M. 1986. Scaling the atmospheric boundary layer.Bound.-Layer Meteorol. 36, 201–209.

    Google Scholar 

  6. Hinze 0. 1975. Turbulence. Mc Graw-Hill, New York, U.S.A.

    Google Scholar 

  7. Hunt J.C.R. 1982. Diffusion in the stable boundary layer. In Atmospheric turbulence and air pollution (eds. F.T.M. Nieuwstadt and H. van Dop ), Atmospheric Science Library, Kluwer Academic Publishers, Dordrecht, the Netherlands, pp 231–272.

    Google Scholar 

  8. Garratt, J.R. 1992. The atmospheric boundary layer. Cambridge atmospheric and space science series, Cambridge University Press, Cambridge, England.

    Google Scholar 

  9. Grant A.L.M. 1992 The structure of turbulence in the near-neutral atmospheric boundary layer. J. Atmos. Sci. 49, 226–239.

    Article  ADS  Google Scholar 

  10. Lamb R.G., 1982. Diffusion in the convective boundary layer. In Atmospheric turbulence and air pollution (eds. F.T.M. Nieuwstadt and H. van Dop ), Atmospheric Science Library, Kluwer Academic Publishers, Dordrecht, the Netherlands., pp 159–230.

    Google Scholar 

  11. Mason P. 1989. Large eddy simulation of the convective atmospheric boundary layer. J. Atmos. Sci. 46, 1492–1516.

    Article  ADS  Google Scholar 

  12. Mason P.J. and Thomson D.J. 1987. Large-eddy simulation of the neutral-static-stability planetary boundary layer. Q. J. R. Meteorol. Soc. 113, 413–443.

    Article  ADS  Google Scholar 

  13. Mason P.J. and Derbyshire S.H. 1990. Large-eddy simulation of the stably-stratified atmospheric boundary layer. Bound.-Layer Meteorol. 53, 117–162.

    Article  ADS  Google Scholar 

  14. Nieuwstadt F.T.M. and Tennekes H. 1981. A rate equation for the nocturnal boundary-layer height. J. Atmos Sci. 38, 1418–1428.

    Article  ADS  Google Scholar 

  15. Nieuwstadt F.T.M. 1984a. The turbulent structure of the stable boundary layer. J. Atmos. Sci. 41, 2202–2216.

    Article  ADS  Google Scholar 

  16. Nieuwstadt F.T.M. 1984b. Some aspects of the turbulent stable boundary layer. Bound. Layer Meteorol. 30, 31–54.

    Article  ADS  Google Scholar 

  17. Nieuwstadt, F.T.M. and van Dop H. 1982. Atmospheric turbulence and air pollution. Atmospheric Science Library, Kluwer Academic Publishers, Dordrecht, the Netherlands.

    Google Scholar 

  18. Nieuwstadt F.T.M. and Brost R.A. 1986. The decay of convective turbulence. J. Atmos. Sci. 43, 532–546.

    Article  ADS  Google Scholar 

  19. Nieuwstadt F.T.M. and Glendening J.W. 1989. Mesoscale dynamics of the depth of a horizontally non-homogeneous well-mixed boundary layer. Beitr. Phys. Atmosph. 62, 275288.

    Google Scholar 

  20. Nieuwstadt F.T.M, Mason P.J., Moeng C.-H. and Schumann U. 1992. Large-eddy simulation of the convective boundary layer: a comparison of four computer codes. In Turbulent Shear Flows 8, Springer-Verlag, Berlin, pp 343–367.

    Google Scholar 

  21. Reynolds W.0 1990. The potential and limitations of direct and large-eddy simulations. In Whither turbulence? Turbulence at the crossroads. (ed. J.L. Lumley) Springer-Verlag, pp 313–343.

    Google Scholar 

  22. Robson R.E. 1987. Turbulent dispersion in a stable layer with quadratic exchange coefficient. Bound. Layer Meteorol. 39 207–218.

    Article  ADS  Google Scholar 

  23. Schmidt H. and Schumann U. 1988. Coherent structure of the convective boundary layer derived from large eddy simulation. J. Fluid Mech. 200, 511–562.

    Article  ADS  Google Scholar 

  24. Schumann U. 1989. Large-eddy simulation of turbulent diffusion with chemical reactions in the convective boundary layer. Atmos. Env 23, 1713–1727.

    Article  Google Scholar 

  25. Schumann, U. 1991. Simulations and parameterizations of large eddies in convective atmospheric boundary layers. In ECMWF-Workshop on Fine-scale modelling and the development of parameterization schemes, Reading 16–18 September.

    Google Scholar 

  26. Schumann U. and Friedrich R. 1987. On direct and large-eddy simulation of turbulence. In Advances in Turbulence. (eds. G. Comte-Bellot and J. Mathieu ), Springer-Verlag.

    Google Scholar 

  27. Schumann U. and Moeng C.-H. 1991. Plume fluxes in clear and cloudy convective boundary layers. J. Atmos. Sci. 48, 1746–175.

    Article  ADS  Google Scholar 

  28. Sorbjan Z. 1989. Structure of the atmospheric boundary layer. Prentice Hall, Englewood, New Jersey, U.S.A.

    Google Scholar 

  29. Stull, R. 1988. An introduction to boundary-layer meteorology. Atmospheric Science Library, Kluwer Academic Publishers, Dordrecht, the Netherlands.

    Google Scholar 

  30. Tennekes H. and Lumley J.L. 1972. A first course in turbulence. The MIT Press, Cambridge, Massachusetts, U.S.A.

    Google Scholar 

  31. Venkatram A. 1988. Dispersion in the stable boundary layer. In Lectures on air pollution modelling (eds. A. Venkatram and J.C. Wyngaard ), American Meteorological Society, Boston, U.S.A., pp 229–258.

    Google Scholar 

  32. Venkatram A. and Wyngaard J.C. 1988. Lectures on air pollution modellingAmerican Meteorological Society, Boston, U.S.A.

    Google Scholar 

  33. Weil J.C. 1988. Dispersion in the convective boundary layer. In Lectures on air pollution modelling (eds. A. Venkatram and J.C. Wyngaard), American Meteorological Society, Boston, U.S.A., pp 167–222.

    Google Scholar 

  34. Willis G.E and Deardorff J.W 1976. A laboratory model of diffusion into the convective planetary boundary layer. Q. J. R. Meteorol. Soc. 102, 427–445.

    Article  ADS  Google Scholar 

  35. Willis G.E and Deardorff J.W 1981. A Laboratory study of dispersion from a source in the middle of the convectively mixed layer. Atmos. Env. 15, 109–117.

    Article  Google Scholar 

  36. Wyngaard, J.C. 1988. Structure of the PBL. In Lectures on air pollution modelling (eds. A. Venkatram and J.C. Wyngaard ), American Meteorological Society, Boston, U.S.A., pp 9–61.

    Google Scholar 

  37. Wyngaard, J.C. 1992. Atmospheric turbulence. Annu. Rev. Fluid Mech. 24, 205–233.

    Article  ADS  Google Scholar 

  38. Wyngaard J.C. and Brost R.A 1984. Top-down and bottom-up diffusion of a scalar in the convective boundary layer. J. Atmos. Sci. 41, 102–112.

    Article  ADS  Google Scholar 

  39. Wyngaard, J.C., Coté O.R. and Y. Izumi 1971. Local free convection, similarity and the budgets of shear stress and heat flux. J. Atmos. Sci. 28, 1171–1182.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nieuwstadt, F.T.M. (1995). Atmospheric Boundary-Layer Processes and Influence of Inhomogeneous Terrain. In: Gyr, A., Rys, FS. (eds) Diffusion and Transport of Pollutants in Atmospheric Mesoscale Flow Fields. ERCOFTAC Series, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8547-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8547-7_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4501-0

  • Online ISBN: 978-94-015-8547-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics