Skip to main content

Plastic Deformation of Gabbros in a Slow-spreading Mesozoic Ridge: Example of the Montgenèvre Ophiolite, Western Alps

  • Conference paper
Mantle and Lower Crust Exposed in Oceanic Ridges and in Ophiolites

Part of the book series: Petrology and Structural Geology ((PESG,volume 6))

Abstract

Gabbros of the Montgenèvre ophiolite (external Piémont zone, western Alps), with the mineralogical, geochemical and isotopic characteristics of an oceanic ridge, show evidence of pervasive high-temperature deformation before the intrusion of basalt dikes. This deformation is incipient in the layered troctolites immediately above a locally preserved paleo-Moho, and increases in intensity upward in the overlying olivine-poor gabbros producing an anastomosing system of mylonitic shear zones and several steep ultramylonite belts. The mylonites and ultramylonites developed by solid-state shearing of the gabbros at temperatures in excess of 800–850°C, allowing recrystallization of augite subgrains in the wings of ductilely deformed magmatic diopside-salite clasts followed by crystallization of brown amphiboles. On the basis of textural relationships it is proposed that syn-kine-matic partial melting within the sheared gabbros, at temperatures of 850° C or higher, generated augite- and pargasite-bearing leucodioritic magmas which evolved in narrow magmatic conduits and percolated through tec-tonites and actively deforming mylonite zones, to form cross-cutting veins in adjacent less deformed gabbros. The complex geometry of the structures and their kinematics, when restored to a stage before the onset of pre-Alpine and Alpine brittle tectonics, suggest that this tectono-metamorphic evolution started after rapid solidification of the gabbros. It is proposed that the gabbroic mass was pushed away from a spreading center due to the activity of extensional and transform shear zones, in response to spreading through continuous domal uplift of the underlying mantle peridotites from which, at deeper levels, new basaltic melt was extracted to produce off-axis basaltic volcanism. The “magmatic” Moho became thereby transformed into a “tectonic” moho, followed by uplift of peridotites to the ocean floor where they became overlain by ultramafic-derived sediments such as to form a “sedimentary” Moho. The scarce geochronological data suggest a long time span, of about 50–60 Ma, between magmatic crystallization of gabbros and diorites (212± 8 Ma) and the deposition of the oceanic cover (165–160 Ma), suggesting a slow-spreading paleoridge in the relatively narrow (<1000 km) Piemonte-Ligurian branch of the Tethys ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beard, J. S., 1990. Dehydration melting of amphibolite at 1–7 kilobars. Trans. Am. Geophys. Union, 71: 1714.

    Google Scholar 

  • Bernoulli, D. and Lemoine, M., 1980. Birth and early evolution of the Tethys: the overall situation. 26th Int. Geol. Congr. Paris, 1980, Coll. C5, 167–179.

    Google Scholar 

  • Bertrand, J., Steen, D., Tinkler, C. and Vuagnat, M., 1980. The Mélange zone of the Col du Chenaillet Montgenèvre ophiolite, Hautes Alpes, France. Arch. Sei., Genève, 33: 117–138.

    Google Scholar 

  • Bertrand, J., Courtin, B. and Vuagnat, M., 1981. Le massif ophiolitique du Montgenèvre Hautes Alpes, France, et province de Turin, Italie: Données nouvelles sur un vestige de manteau supérieur et de croûte océanique liguro-piémontais. Bull. Suisse Minerai. Pétrogr., 61: 305–322.

    Google Scholar 

  • Bertrand, J., Courtin, B., and Vuagnat, M., 1982. Elaboration d’un secteur de lithosphère océanique liguro-piémontais d’après les données de l’ophiolite du Montgenèvre, Hautes Alpes, France, et province de Turin, Italie. Ofioliti, 7: 155–196.

    Google Scholar 

  • Bertrand, J., Dietrich, V, Nievergelt, P., and Vuagnat, M., 1987. Comparative major and trace element geochemistry of gabbroic and volcanic rock sequences, Montgenèvre ophiolite, Western Alps. Schweiz.Mineral. Petrogr. Mitt., 67: 147–169.

    Google Scholar 

  • Blake, M.C. and Jayko, A.S., 1990. Uplift of very high pressure rocks in the western Alps: evidence for structural attenuation along low-angle faults. In: F. Roure, P. Heitzmann and R.Polino (Editors), Deep structure of the Alps. Mem. Soc. géol. Fr., Paris, 156: 237–246.

    Google Scholar 

  • Bodinier, J. L., 1988. Geochemistry and petrogenesis of the Lanzo peridotite body, western Alps. Tectonophysics, 149: 67–88.

    Article  Google Scholar 

  • Boudier, F. and Nicolas, A., 1977. Structural controls on partial melting in the Lanzo peridotites. In: H.J.B. Dick (Editor), Oregon Dept. Mineral. Ind., 96: 63–78.

    Google Scholar 

  • Caby, R., Dupuy, C. and Dostal, J., 1987. The very beginning of the Ligurian Tethys: Petrological and geological evidence from the oldest ultramafic-derived sediments in Queyras, Western Alps, France. Eclog. geol. Helv., 80: 223–240.

    Google Scholar 

  • Cannât, M., Mével, C. and Stakes D., 1991. Stretching of the deep crust at the slow-spreading Southwest Indian Ridge. Tectonophysics, 190: 73–94.

    Article  Google Scholar 

  • Carpena, J. and Caby, R., 1984. Fission-track evidence for Late Triassic oceanic crust in the French Occidental Alps. Geology, 12: 108–111.

    Article  Google Scholar 

  • Chapelle, B., 1990. La litosphère océanique de la Téthys ligure. Etude des magmatismes basiques et acides (massifs ophiolitiques du Montgenèvre et de Haute-Ubaye). Unpublished Thesis, Grenoble, France, 196 pp.

    Google Scholar 

  • Dilek, Y. and Delaloye, M., 1992. Structure of the Kizildag ophiolite, a slow-spread Cretaceous ridge segment north of the Arabian promontory. Geology, 20: 19–22.

    Article  Google Scholar 

  • Ildefonse, B., Nicolas, A. and Boudier, F., 1993. Evidence from the Oman ophiolite for sudden stress changes during melt injection at oceanic spreading centers. Nature, 236: 673–675.

    Article  Google Scholar 

  • Ishiwatari, A., 1985. Alpine ophiolites: product of low-degree of melting in a transcurrent rift zone. Eart Planet. Sei. Lett. 76: 93–108.

    Article  Google Scholar 

  • Lagabrielle, Y., Polino, R. et al., 1984. Les témoins d’une tectonique intraocéanique dans le domaine tethysien. Analyse des rapports entre les ophiolites et leur couvertures métasédimentaires dans la zone piémontaise des Alpes franco-italiennes. Ofioliti, 9: 67–88.

    Google Scholar 

  • Lemoine, M., 1980. Serpentinites, gabbros and ophicalcites in the Piemont-Ligurian domain of the Western Alps: possible indicators of oceanic fracture zones and associated serpentine protrusions in the Jurassic-Cretaceous Tethys. Arch. Sei. Genève, 33: 103–116.

    Google Scholar 

  • Lemoine, M., Tricart, P. and Boillot, G., 1987. Ultramafic and gabbroic ocean floor of the Ligurian Tethys Alps, Corsica, Apennines: In search of a genetic model. Geology, 15: 622–625.

    Article  Google Scholar 

  • Lombado, B. and Pognante, U., 1982. Tectonic implications in the evolution of the western Alps ophiolite metagabbros. Ofioliti, 2/3: 371–394.

    Google Scholar 

  • Mével, C, Caby, R. and Kienast, J.R., 1978. Amphibolite facies conditions in the oceanic crust: example of amphibolitized flaser-gabbro and amphibolites from the Chenaillet massif, Hautes Alpes, France. Earth Planet. Sei. Lett., 39: 98–108.

    Article  Google Scholar 

  • Nicolas, A., 1989. Structures of ophiolites and dynamics of oceanic lithosphère. Kluwer, Dordrecht, 367 pp.

    Book  Google Scholar 

  • Pupin, J. P., 1980. Zircon and granite petrology. Contr. Min. Petrol, 73: 207–220.

    Article  Google Scholar 

  • Hanmer, S. and Passchier, C.W., 1991. Shear sense indicators: a review. Geol. Surv. Canada Spec. Pap., 90–17: 72 pp.

    Google Scholar 

  • Tricart, P. and Lemoine, M., 1983. Serpentite oceanic bottom in south Queyras ophiolites (French Western Alps): record of the incipient oceanic opening of the Mesozoic Ligurian Tethys. Eclogae geol. Helv., 76: 611–629.

    Google Scholar 

  • Weissert, H.J. and Bernoulli, D., 1985. A transform margin in the Mesozoic Tethys: evidence from the Swiss Alps. Geol. Rundschau, 74: 665–679.

    Article  Google Scholar 

  • Wever de, P. and Caby, R., 1981. Datation de la base des schistes lustrés post-ophiolitiques par des radiolaires Oxfordien supérieur-Kimmeridgien moyen dans les Alpes cottiennes Saint Véran, France. C. Rend. Acad. Sei., 292: 467–472.

    Google Scholar 

  • Wever De, P., Baumgartner, P. and Polino, R., 1987. Précisions sur la datation de la base des Schistes Lustrés postophiolitiques dans les Alpes Cottiennes. C. Rend. Acad. Sei., 305: 487–491.

    Google Scholar 

  • Wolf, M.B. and Wyllie, P.J., 1990. Liquid morphology interConnectivity in solid amphibolite during dehydration melting at 10 kbar. Trans. Am.Geophys. Union, 71: 1714.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Caby, R. (1995). Plastic Deformation of Gabbros in a Slow-spreading Mesozoic Ridge: Example of the Montgenèvre Ophiolite, Western Alps. In: Vissers, R.L.M., Nicolas, A. (eds) Mantle and Lower Crust Exposed in Oceanic Ridges and in Ophiolites. Petrology and Structural Geology, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8585-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8585-9_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4557-7

  • Online ISBN: 978-94-015-8585-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics