Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 304))

Abstract

The increasing number of premature deteriorations of concrete structures due to reinforcement corrosion is promoting the development of more accurate calculation methods of their service lives. Either a certain degree of rebar deterioration controls the service life or, in the case of already deteriorating structures, the corrosion rate is the rate-determining parameter of the damage progress. In the present paper, the factors influencing the steel corrosion rate are described, and quantitative ranges are given based on values obtained by means of the Polarization Resistance method, measured in laboratory specimens, or on-site in real structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tuutti, K. (1982) Corrosion of steel in concrete. Swedish Cement and Concrete Institute (CET) no. 4–82. Stockholm.

    Google Scholar 

  2. Hamada, M. Neutralization of concrete and corrosion of reinforcing steel — 5th Int. Sym. of Cement Chemistry Tokyo (1968) 343–368.

    Google Scholar 

  3. Bakker, R. Prediction of service life of reinforcement in concrete under different climatic conditions at given cover. Corrosion and Protection of Steel in Concrete Int. Conf. R.N. Swamy Ed. Sheffield. July (1994).

    Google Scholar 

  4. Browne, R.A. Design prediction of the life of reinforced concrete in marine and other chloride environments. Durability of Building Materials vol.3 (1982). Elsevier Scientific Publishing Co. Amsterdam.

    Google Scholar 

  5. Collepardi, M., Marcialis, A., Turriziani, R. Penetration of chloride ions into cements pastes and concretes. Journal of the American Ceramic Soc. vol 55 (1972) 534–535.

    Article  CAS  Google Scholar 

  6. Andrade, C., González, J.A. Quantitative measurements of corrosion rate of reinforcing steels embedded in concrete using polarization resistance measurements. Werkstoffe und Korrosion 29, (1978) 515–519.

    Article  CAS  Google Scholar 

  7. Gonzalez, J.A., Algaba, S., Andrade, C. Corrosion of reinforcing bars in carbonated concrete. British Corrosion 5. vol 15, no. 3 (1980) 136.

    Google Scholar 

  8. Glass, G.K., Page, C.L., Short, N.R. Factors affecting the corrosion rate of steel in carbonated mortars. Corrosion Science vol 32 no. 12 (1991) 1283–1294.

    Article  CAS  Google Scholar 

  9. Andrade, C., Alonso, C., Ortega, L., Garcia, M. On site monitoring of concrete repairs by Polarization Resistance. Rilem Conf. on Rehabilitation of Concrete Structures. D. Ho. Ed. CSIRO. Melbuourne (Australia) Sep (1992) 51–60.

    Google Scholar 

  10. Andrade, C., Alonso, C., Gonzalez, J.A. An initial effort to use corrosion rates measurements for estimating rebar durability. Corrosion Rates of Steel in Concrete ASTM STP 1065. Berke, Chacker and Whithing Ed. (1990) 29–37.

    Google Scholar 

  11. Andrade, C., Alonso, C., Gonzalez, J.A., Rodriguez J. Remaining service life of corroding structures. IABSE Symposium on Durability. Lisboa Sep (1989) 359–363.

    Google Scholar 

  12. Alonso, C., Andrade, C., Rodriguez, J., Casal, J., Garcia, M. Rebar Corrosion and time to cover cracking. Concrete accross Borders Int. Conference — Odense (Denmark) June (1994) 301–319.

    Google Scholar 

  13. Constantinou, A.G., Scrivener, K.L., Alonso C., Andrade, C. The corrosion of steel in concrete subjected to chloride and carbon dioxide environments. Cement and Concrete Science Symposium. Oxford (UK) Sep. (1992).

    Google Scholar 

  14. Pourbaix, M. Atlas of Electrochemical Equilibria in aqueous solutions. Pergamon Press Ltd. London (1976).

    Google Scholar 

  15. Pourbaix, M. Lectures on Electrochemical corrosion. Plenum Press. New York. London (1973).

    Book  Google Scholar 

  16. Galvele, J.R. Transport processes and the mechanisms of pitting of metals. Journal of the Electrochemical Soc. vol. 123 no. 4 (1976) 464–474.

    Article  CAS  Google Scholar 

  17. Andrade, C., Alonso C., Garcia, D., Rodriguez, J. Remaining life time of reinforced concrete structures: effect of corrosion in the mechanical properties of the steel. NACE Symposium of Life Prediction of Corrodible Structures. Cambridge. Sep. (1991).

    Google Scholar 

  18. Evans, U.R. Metallic Corrosion passivity and protection. Edward Arnold Ed. London.(1948).

    Google Scholar 

  19. Strattman, M., Bonnen Kamp, K., Engell, HJ. An electrochemical study of phase -transitions in rust layers. Corrosion Science vol. 23 no. 9 (1983) 469–985.

    Google Scholar 

  20. Stern, M., Geary, A.L. Electrochemical Polarization: ID theoretical analysis of the shape of polarizatrion curves. Journal of Electrochemical Soc. vol 104, no. 1 (1957) 56–63.

    Article  CAS  Google Scholar 

  21. Stern, M., Weisert, E.D. Experimental observations on the relations between polarization resistance and corrosion rate. Proc. Amer. Soc. Test, Mater. (1958) 1280.

    Google Scholar 

  22. Feliu, S., Morcillo, M. Corrosion y Protección de los metales en la atmósfera. Ediciones Bellaterra. Barcelona (1982).

    Google Scholar 

  23. Andrade, C., Maribona, I.R., S. Feliu, Gonzalez, J.A., Feliu Jr. , S. The effect of macrocells between active and passive areas of steel reinforcement. Corrosion Science vol. 33, no. 2 (1992) 237–249.

    Article  CAS  Google Scholar 

  24. Berke, N. S., Shen, D.F., Sundberg, K.M. Comparison of the polarization resistance technique to the macrocell corrosion technique. Corrosion rates of steel in concrete ASTM 1065. Berke, Chacker and Whiting Ed. (1990) 38–51.

    Google Scholar 

  25. Gofti, S., Andrade, C., Synthetic concrete pore solution chemistry and rebar corrosion rate in the presence of chlorides. Cement and Concrete Res. 20 (1990) 525–539.

    Article  Google Scholar 

  26. Hausmann, D.A., Electrochemical behaviour of steel in concrete. Journal ACI, Feb (1964) 171.

    Google Scholar 

  27. Alonso, C., Andrade, C., Gonzalez, JA. Relation between concrete resistivity and corrosion rate of the reinforcements in carbonated mortar made with several cement types. Cement and Concrete Res. vol. 18 (1988) 687–698.

    Article  CAS  Google Scholar 

  28. Gjorv, O.E., Vennesland, O. Diffusion of dissolved oxygen through concrete. Materials Performance vol. 25 (1986) 39–44.

    CAS  Google Scholar 

  29. Hedenbland, G. Determination of moisture permeability in concrete under high moisture conditions. Nordic Concrete Research. Publication no. 7. Norwegian Concrete Ass. Oslo (1988).

    Google Scholar 

  30. Parrott, L.J. Water absorption in cover concrete. Materials and Structures vol. 25 (1992) 284–282.

    Article  CAS  Google Scholar 

  31. Feliu, S., Gonzalez, JA., Feliu, S. Jr., Andrade, C. Confinement of the electrical signal for in-situ measurements of polarization resistance in reinforced concrete. Materials Journal of ACI, Sep-Oct (1990) 457–460.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Andrade, C., Alonso, C. (1996). Durability Design Based on Models for Corrosion Rates. In: Jennings, H., Kropp, J., Scrivener, K. (eds) The Modelling of Microstructure and its Potential for Studying Transport Properties and Durability. NATO ASI Series, vol 304. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8646-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8646-7_26

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4653-6

  • Online ISBN: 978-94-015-8646-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics