Skip to main content

Biosensors Based on Solid Supported Lipid Bilayers and Their Physical Properties

  • Chapter
Biosensors for Direct Monitoring of Environmental Pollutants in Field

Part of the book series: NATO ASI Series ((ASEN2,volume 38))

Abstract

The paper reports the significance of bilayer lipid membranes on a solid support (sBLM) for the construction of biosensors. The methods of formation of lipid membranes on different solid supports including different metals (silver, gold, stainless steel), agar and conducting polymers are presented. Several examples of the application of electrostriction and dielectric relaxation methods for the study of mechanical properties and dynamics of solid supported bilayers have been shown. We demonstrated that these methods are usefull for determination of the binding of enzymes and antibodies to sBLM and for study physical properties of modified supported membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mueller. P., Rudin, D.O., Tien, H.T. and Wescott, W.C. (1962) Reconstitution of cell membrane structure in vitro and its transformation into an excitable system, Nature 194, 979–980.

    Article  CAS  Google Scholar 

  2. Del Castillo. J.. Rodriguez, A., Romero, CA and Sanchez, V. (1996) Lipid films as transformator for detection of antigen-antibody and enzyme-substrate reaction, Science 153, 185–188.

    Google Scholar 

  3. Atwood. J.L. and Osa, T. (1991) Inclusion Aspects ofMembrane Chemistry, Reidel, Boston.

    Google Scholar 

  4. Tien, H.T. and Salamon, Z. (1989) Formation of self-assembled lipid bilayers on solid substrates, Bioelectrochem.Bioenerg. 22, 211–218.

    Article  CAS  Google Scholar 

  5. Snejdarkovâ M., Rehâk M. and Otto M. (1993) Design of a glucose minisensor based on streptavidinglucose oxidase complex coupling with self-assembled biotinylated phospholipid membrane on solid support, Anal. Chem. 65, 665–669.

    Article  Google Scholar 

  6. Hianik T., Snejdirkovâ, M., Passechnik, V.I., Rehak, M. and Babincovi M. (1996) Immobilization of enzymes on lipid bilayers on a metal support allows study of the biophysical mechanisms of enzymatic reactions, Bioelectrochem. Bionerg. 41 221–225.

    Article  CAS  Google Scholar 

  7. Tvarozek, V., Tien, H.T., Novotny, I., Hianik, T., Dlugopolsky, J., Ziegler, W., Leitmannovâ-Ottovâ, A., Jakabovic, J., Rehicek, V. and Uhlar M. (1994) Thin-film microsystems applicable in (bio-) chemical sensors, Sensors and Actuators (B) 19, 597–602.

    Article  CAS  Google Scholar 

  8. Snejdârkovâ, M., Rehik, M., Sargent, D.F., Babincovâ, M. and Hianik, T. (1997): New glucose minisensor based on self-assembled biotinylated phospholipid membrane on a solid suport and its physical properties, Bioelectrochem. Bioenerg. (in press)

    Google Scholar 

  9. Florin. E.L. and Gaub, H.E. (1993) Painted supported lipid membranes, Biophys. J. 64, 375–383.

    Article  CAS  Google Scholar 

  10. Mirsky, V.M., Krause, C. and Heckmann, K.D. (1995) Capacitive sensor for lypolitic enzymes, Book of Abstracts. LB7 Conference, Numana ( Ancona ), Italy, p. 139.

    Google Scholar 

  11. Hianik T. and Dlugopolsky, J. (1993) Electrostriction of lipid bilayers on platinum support; effect of surface roughness, MEBC Newsletter (Washington) 7, 37–40.

    Google Scholar 

  12. Uto, M., Araki, M., Taniguchi, T., Hoschi. S. and Inoue, S. (1994) Stability of an agar-supported bilaver lipid membrane and its application to a chemical sensor, Analyt. Sci. 10, 943–946.

    CAS  Google Scholar 

  13. Lu, \.D., Ottova-Leitmannova, A. and Tien, H.T. (1996) Biophysical aspects of agar-gel supported bilayer lipid membranes: a new method for forming and studying planar bilayer lipid membranes, Bioelectrochem. Bioenerg. 39, 285–289.

    Google Scholar 

  14. Ziegler. W., Gaburjakovâ, M., Gaburjakovâ, J.; Tvarozek, V. and Hiac.i:c T. (1996) Agar-supported bilaver lipid membranes (asBLM): A new membrane concept for future biosensor applications, Biologia 51, 683–687.

    Google Scholar 

  15. Hianik T.. Cervenanskâ, Z., Krawczynsky vel Krawczyk, T. and Snejdirkovâ, M. (1997) Conductance and electrostriction of bilayer lipid membranes supported on conducting polymer and their application for determination of ammonia and urea, Material Sci. Eng. C (in press).

    Google Scholar 

  16. Seifert, K., Fendler, K. and Bamberg, E. (1993) Charge transport by ion translocating membrane proteins on solid supported membranes, Biophys J. 64, 384–391.

    Article  CAS  Google Scholar 

  17. Nauman, R., Jonczyk, A., Kopp, R., Van Esch, J., Ringsdorf, H., Knoll, W., and Gräber P. (1995) Incorporation of membrane proteins in solid-supported lipid layers, Angew. Chem. Int. 34, 2056–2058.

    Article  Google Scholar 

  18. Hianik, T., Krivânek, R., Masai, E., Dujsik, J., Snejdarkova, M., Rehik M., Stepanek, I. and Nikolelis, D.P. (1997) Binding of avidin modified antibody to biotinylated metal supported membranes and liposomes change the physical properties of lipid bilayer, Gen. Physiol. Biophys., 1997 (submitted)

    Google Scholar 

  19. Siontorou, C.G., Nikolelis, D.P., Plunno, P.A.E. and Krull, U.J. (1997) Detection of DNA hybridization using self-assembled bilayer lipid membranes (BLMs), Electroanalysis (in press)

    Google Scholar 

  20. Hianik, T., Dlugopolsky, J. and Gyepessova M. (1993) Electrostriction of lipid bilayers on a solid suport. Influence of hydrocarbon solvent and dc voltage, Bioelectrochem. Bioenerg. 31, 99–111.

    Article  CAS  Google Scholar 

  21. Rehik M., Snejdarkova, M. and Oto. M. (1994) Application of biotin-streptavidin technology in developing a xanthine biosensor based on self-assembled phospholipid membrane, Biosens. Bioelectr. 9. 337–341.

    Article  Google Scholar 

  22. Rehäk. M., Snejdarkovâ, M. and Hianik, T. (1997) Acetylcholine minisensor based on a metal supported lipid bilayers for determination of the environmental pollutants. Electroanalysis (in press).

    Google Scholar 

  23. Hianik. T.. Rehâk M., S.nejdarkovâ. M.. Dujsik, J.. Dusinsky, R. and Nikolelis. D.P. (1997) A simple novel inununosensor based on metal supported bilayer lipid membranes - investigation of its physical properties. Proceedings of the I1 `h European Conference on Solid-State Transducers,Warsaw, Poland (in press).

    Google Scholar 

  24. Nikolelis, D.P., Siontorou, C.G., Krull, U.J., and Katrivanos, P.L. (1996) Ammonium ion minisensors from self-assembled bilayer lipid membranes using gramicidin as an ionophore. Modulation of ammonium selectivity by platelet-activating factor, Anal. Chem. 68, 1735–1741.

    Article  CAS  Google Scholar 

  25. Nikolelis, D.P. and Andreou, V.G. (1996) Electrochemical transduction of interactions of interactions of atrazine with bilayer lipid membranes Electroanalysis 8, 643–647.

    Article  CAS  Google Scholar 

  26. Lang, H., Duschl, C., Grätzel, M. and Vogel, H. (1992) Self-assembly of thiolipid molecular layers on g old surfaces: optical and electrochemical characterization, Thin Solid Films 210/211, 818–821.

    Google Scholar 

  27. Sleytr, U.B., Messner, P., Punt, D., and Sara M. (1996) Molecular nanotechnology and biomimetics with S-layers, in U.B. Sleytr, P. Messner, D. Pum and M. Sara (eds.), Crystalline Bacterial Cell Surfbce Proteins. Academic Press. R.G. Landes Company, Austin, pp. 175–209.

    Google Scholar 

  28. Cervenanski, Z., Snejdirkovi, M., Krawczynski vel Krawczyk, T.. Novotny, I.. Tvarozek, V. and Hianik. T. (1996) Urea sensor based on lipid bilayer supported on conducting polymer, Proceedings of the International Conference on Advanced Semiconductor Devices and Microsystems, Smolenice, Slovakia, pp. 335–338.

    Google Scholar 

  29. Ziegler, W., Gaburjakovâ, M., Gaburjakovi, J., Sivik, B., Rehicek, V., Tvarozek, V. and Hianik T. (1997) Biosensors based on supported lipid bilayer membranes. Their electrical and mechanical properties, Coll. Surf. A (in press).

    Google Scholar 

  30. Hianik, T. and Passechnik, V.I. (1995) Bilayer Lipid Membranes: Structure and Mechanical Properties, Kluwer Academic Publishers. Dordrecht.

    Google Scholar 

  31. Passechnik, V.I. and Hianik, T. (1977) Elastic properties of the bilayer membranes in the direction perpendicular to the membrane plane. Kolloid. Zh. 38, 1180–1185.

    Google Scholar 

  32. Carius, W. (1976) Voltage dependence of bilayer membrane capacitance. Harmonic response to AC excitation with DC bias, J. Coll. Interface Sci. 57, 301–307.

    Article  CAS  Google Scholar 

  33. Sargent, D.F. (1975) Voltage jumpicapacitance relaxation studies of bilayer structure and dynamics, J. Membrane Biol. 23, 227–247.

    Article  Google Scholar 

  34. Boucher, C.J.F. (1952) Theory of Electric Polarization. Elsevier, Amsterdam.

    Google Scholar 

  35. Babakov, A.V., Ermishkin, L.M. and Liberman, E.A. (1966) Influence of electric field on the capacity of phospholipid membranes. Nature 210, 953–955.

    Article  CAS  Google Scholar 

  36. White, S.H. and Thompson, T.E. (1973) Capacitance, area and thickness variations in thin lipid films. Biochim. Biophys. Acta 323, 7–22.

    Article  CAS  Google Scholar 

  37. Hianik, T., Dlugopolsky, J., Passechnik, V.I., Sargent, D.F., Ivanov, S.A. (1996): Electrostriction and membrane potential of lipid bilayers on a metal support. Coll. Surfaces A 106, 109–118.

    Article  CAS  Google Scholar 

  38. Wilchek. B. and Bayer, E.A. (1990) Avidin-biotin technology. MethodsEnzymol. 184, 746–748.

    Google Scholar 

  39. Degani, Y and Heller, A. (1989) Electrical communication between redox centers of glucose oxidase and electrodes via electrostatically and cov’lently bound redox polymers, J. Amer. Chem. Soc. 111, 2357–2358.

    Article  CAS  Google Scholar 

  40. Davis, J.H. (1983) The description of membrane lipid conformation, order and dynamics of 2H-NMR, Biochim. Biophys. Acta 737, 117–171.

    Article  CAS  Google Scholar 

  41. Laggner, P. and Kriechbaum, M. (1991) Phospholipid phase transitions: kinetics and structural mechanisms. Chem. Phys. Lipids 57, 121–145.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hianik, T. (1998). Biosensors Based on Solid Supported Lipid Bilayers and Their Physical Properties. In: Nikolelis, D.P., Krull, U.J., Wang, J., Mascini, M. (eds) Biosensors for Direct Monitoring of Environmental Pollutants in Field. NATO ASI Series, vol 38. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8973-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8973-4_29

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4959-9

  • Online ISBN: 978-94-015-8973-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics