Skip to main content

Part of the book series: Current Plant Science and Biotechnology in Agriculture ((PSBA,volume 32))

Abstract

Deterioration of the environment is increasing the levels of abiotic and biotic stress on plant growth. Further expansion of cultivated land has reached a limit. Rapid industrialization and increase in population are causing environmental changes such as depletion of the atmospheric ozone layer, acid rain, erratic weather, insect and pest problems, diseases, global warming, and increase in the ultraviolet-B (UV-B) radiation level. The adverse environmental impact is gradually leading to reduction in crop production and poses a serious threat to sustained food production. Plant breeders are faced with the challenge to enhance food production for the ever-increasing human population despite the deteriorating environment. So far, conventional plant breeding and crop management practices have enhanced crop production. New approaches and tools are now available to assist plant breeders to improve crops. Plant biotechnology offers new possibilities to sustain agricultural production by offering new opportunities for creating and utilizing genetic variation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahloowalia, B.S. 1976. Chromosomal changes in parasexually produced ryegrass. In: Current Chromosome Research, pp. 115–122 (eds K. Jones and P. Brandham). Amsterdam: Elsevier.

    Google Scholar 

  • Ahloowalia, B.S. 1986. Limitations to the use of somaclonal variation in crop improvement. In: Somaclonal Variation and Crop Improvement, Advances in Agricultural Biotechnonogy, pp. 14–27 (ed. J. Semal). Dordrecht: Martinus Nijhoff.

    Google Scholar 

  • Ahloowalia, B.S. and J. Sherington. 1985. Transmission of somaclonal variation in wheat. Euphytica 34: 525–537.

    Article  Google Scholar 

  • Alicchio, R. 1990. Somaclonal variation in eggplant (Solanum melongena L.). In: Somaclonal Variation in Crop Improvement. I: Biotechnology in Agriculture and Forestry, pp. 416–434 (ed. Y.P.S. Bajaj). Berlin: Springer-Verlag.

    Google Scholar 

  • Alicchio, R., C. Antonioli and D. Palenzona. 1984. Karyotypic variability in plants of Solanum melongena regenerated from callus grown in presence of culture of filtrate of Verticillium dahliae. Theor Appl Genet. 67: 267–271.

    Article  Google Scholar 

  • Annual Report. 1996. International Atomic Energy Agency, Vienna, Austria.

    Google Scholar 

  • Banerjee, M.K. and Kalloo, 1989. Role of phenols in resistance to tomato leaf curl virus, Fusarium wilt and fruit borer in Lycopersicon. Curr Sci. 58: 575–576.

    CAS  Google Scholar 

  • Barden, K., A. Schiller, S. Smith and H. Murakishi. 1986. Regeneration and screening of tomato somaclones for resistance to tobacco mosaic virus. Plant Sci. 45: 209–213.

    Article  Google Scholar 

  • Bebeli, P.J., P.J. Kaltsikes and A. Karp. 1993. Field evaluation of somaclonal variation in rye lines differing in telomeric heterochromatin. J Genet Breed. 47: 15–22.

    Google Scholar 

  • Behl, R.K., H.S. Nainawatee, and K.P. Singh. 1983. High temperature tolerance in wheat. In: International Crop Science 1. Crop Science Society of America, Madison, Wisconsin p. 349–555.

    Google Scholar 

  • Buiatti, M. and F. Gimelli. 1993. Somaclonal variation in ornamentals. In: Creating Genetic Variation in Ornamentals, pp. 5–24 (eds T. Schiva and A. Mercuri). Sanremo: Istituto Sperimentale per la Floricoltura.

    Google Scholar 

  • Buiatti, M. and R. Morpurgo. 1990. Somaclonal variation in tomato. In: Somaclonal Variation in Crop Improvement I: Biotechnology in Agriculture and Forestry, 11 pp. 400–415 (ed. Y.P.S. Bajaj). Berlin: Springer-Verlag.

    Google Scholar 

  • Burg, H.C.J., K. Sree Ramulu, G.M.M. Bredemeijer, S. Roest, P. Dijkhuis, J.J. van Hoogen and A. Houwing. 1989. Patterns of phenotypic and tuber protein variation in plants derived from protoplasts of potato (Solanum tuberosum L. cv. Bintje). Plant Sci. 64: 113–124.

    Article  CAS  Google Scholar 

  • Burgutin, A.B., S.M. Musin and R.G. Butenko. 1994. Segregation of biochemical genetic determinants in somaclonal variants of the potato interspecific somatic hybrid. Russ J Plant Physiol. 41:739–747.

    Google Scholar 

  • Carlberg, I., K. Glimelius and T. Eriksson. 1984. Nuclear DNA-content during the initiation of callus formation from isolated protoplasts of Solanum tuberosum L. Plant Sci Lett. 35: 225–230.

    Article  CAS  Google Scholar 

  • Cheng, X.Y., M.W. Gao, Z.Q. Liang and K.Z. Liu. 1990. Effect of mutagenic treatments on somaclonal variation in wheat (Triticum aestivum L.). Plant Breed. 105: 47–52.

    Article  Google Scholar 

  • Compton, M.E. and R.E. Veilleux. 1991. Variation for genetic recombination among tomato plants regenerated from three tissue culture systems. Genome. 34: 810–817.

    Article  CAS  Google Scholar 

  • Creissen, G.P. and A. Karp. 1985. Karyotypic changes in potato plants regenerated from protoplasts. Plant Cell Tissue Org Cult. 4: 171–182.

    Article  Google Scholar 

  • Crino, P., A. Lai, R.D. Bonito and P. Veronese. 1994. Genetic variability in tomato plants regenerated from irradiated cotyledons. JGenet Breed. 48: 281–290.

    Google Scholar 

  • Deverno, L.L. 1995. An evaluation of somaclonal variation during somatic embryogenesis. In: Somatic Embryogenesis in Woody Plants, Vol. 1, pp. 361–377 (eds S.M. Jain, P.K. Gupta and R.J. Newton). Dordrecht: Kluwer.

    Google Scholar 

  • Evans, D.A. and W.R. Sharp. 1983. Single gene mutations in tomato plants regenerated from tissue culture. Science. 221: 949–951.

    Article  PubMed  CAS  Google Scholar 

  • Fourre, J.L., P. Berger, L. Noquet and P. Andre. 1997. Somatic embryogenesis and somaclonal variation in Norway spruce: morphogenetic, cytogenetic and molecular approaches. Theor Appl Genet. 94:159–169.

    Article  Google Scholar 

  • Gavazzi, G., C. Tonelli, G. Todesco, E. Arreghini, F. Raffaldi, F. Vecchio, G. Barbuzzi, M.G. Biasini and F. Sala. 1987. Somaclonal variation versus chemically induced mutagenesis in tomato (Lycopersicon esculentum L.). Theor Appl Genet. 74: 733–738.

    Article  Google Scholar 

  • Gonzalez, A.I., M.I. Pelaez and M.L. Ruiz. 1996. Cytogenetic variation in somatic tissue cultures and regenerated plants of barley (Hordeum vulgare L.). Euphytica. 91: 37–43.

    Article  Google Scholar 

  • Hammerschlag, F.A. 1992. Somaclonal variation. In: Biotechnology of Perennial Fruit Crops. pp. 35–55 (eds F.A. Hammerschlag and R.E. Litz). Wellingford: C.A.B. International.

    Google Scholar 

  • Haque, N.S., N.W. Fish and M. Kiel. 1992. Assessment of somaclonal variation in Eucalyptus using random amplified polymorphic DNA markers. Proceedings, Fifth Workshop, IUFRO WK. Party S2.04.06. Carcans-Maubisson, 15–18 June, 1992. INRA, France.

    Google Scholar 

  • Heinze, B. and J. Schmidt. 1995. Monitoring genetic fidelity vs somaclonal variation in Norway spruce (Picea abies) somatic embryogenesis by RAPD analysis. Euphytica. 85: 341–345.

    Article  CAS  Google Scholar 

  • Infante, R., S. Gonelli, P. Rosati and M. Mazzara. 1996. Long-term cell suspension culture and regeneration of the single-leafed strawberry Fragaria vesca monophylla. J Sci Food Agric. 72: 196–200.

    Article  CAS  Google Scholar 

  • Isabel, N., L. Tremblay, M. Michaud, F.M. Tremblay and J. Bousquet. 1993. RAPDs as an aid to evaluate the genetic integrity of somatic embryogenesis-derived populations of Picea mariana (Mill.) BSP. Theor Appl Genet. 86: 81–87.

    CAS  Google Scholar 

  • Jain, S.M. 1993a. Somaclonal variation in Begonia x elatior and Saintpaulia ionantha L. Sci Hort. 54:221–231.

    Article  Google Scholar 

  • Jain, S.M. 1993b. Growth hormonal influence on somaclonal variation in ornamental plants. In: Creating Genetic Variation in Ornamentals, pp. 93–103 (eds T. Schiva and A. Mercuri). Sanremo: Istituto Sperimentale per la Floricoltura.

    Google Scholar 

  • Jain, S. M. 1997a. Somaclonal variation and mutagenesis for crop improvement. In: Maatalouden tutkimuskeskuksen julkaisuja, Vol. 18, pp. 122–133 (ed. S. Immonen).

    Google Scholar 

  • Jain, S. M. 1997b. Creation of variability by mutation and tissue culture in improving plants. Acta Hort. (In press).

    Google Scholar 

  • Jain, S.M. 1997c. Micropropagation of selected somaclones of Begonia and Saintpaulia. J. Biosci. 22: 1–8.

    Google Scholar 

  • Jain, S.M. and R.J. Newton. 1988. Proto-variation in protoplast derived Brassica napus plants. In: Progress in Plant Protoplast Research, Current Plant Science and Biotechnology in Agriculture, vol. 7, pp. 403–404 (eds K.J. Puite, Puite, K.J. J.J.M. Dons, H.J. Huizing, A.J. Kool, M. Koornneef and F.A. Krens) Kluwer.

    Google Scholar 

  • Jain, S.M. and R.J. Newton. 1989. Evaluation of protoclonal variation versus chemically induced mutagenesis in Brassica napus. Curr Sci. 58: 176–180.

    Google Scholar 

  • Jain, S.M., P.K. Gupta and R.J. Newton (eds). 1995. Somatic Embryogenesis in Woody Plants, vols 1–3. Dordrecht: Kluwer.

    Google Scholar 

  • Jain, S.M., D.S. Brar and B.S. Ahloowalia (eds). 1997a. Somaclonal Variation and Induced Mutations in Crop Improvement. Dordrecht: Kluwer. (This volume).

    Google Scholar 

  • Jain, S.M., F. Saccardo, E. Rugini and A. Grassotti. 1997b. Biotechnology and agronomical aspects in gerbera improvement. (In press).

    Google Scholar 

  • Karp, A., 1990. Somaclonal variation in potato. In: Somaclonal Variation in Crop Improvement I: Biotechnology in Agriculture and Forestry, 11, pp. 379–399 (ed. Y.P.S. Bajaj). Berlin: Springer-Verlag.

    Google Scholar 

  • Khalid, N., M.R. Davey and J.B. Power. 1989. An assessment of somaclonal variation in Chrysanthemum morifolium: the generation of plants of commercial value. Sci Hort. 38: 287–294.

    Article  Google Scholar 

  • Landsmann, J. and H. Uhrig. 1985. Somaclonal variation in Solanum tuberosum detected at the molecular level. Theor Appl Genet. 71: 500–505.

    Article  CAS  Google Scholar 

  • Larkin, P.J. and W.R. Scowcroft. 1981. Somaclonal variation - a novel source of variability from cell cultures for plant improvement. Theor Appl Genet. 60: 197–214.

    Article  Google Scholar 

  • Lentini, Z., E.D. Earle, and R.L. Plaisted. 1990. Insect-resistant plants with improved horticultural traits from interspecific potato hybrids grown in vitro. Theor Appl Genet. 80: 95–104.

    Google Scholar 

  • Lindeque, J.M., A. Vandermescht, M.M. Slabbert and G. Henn. 1991. Variation in phenotype and proteins in plants regenerated from cell suspensions of potato cv. BP1. Euphytica. 54: 41–44.

    Article  CAS  Google Scholar 

  • Maddock, S.E. 1986. Somaclonal variation in wheat. In: Somaclonal Variation and Crop Improvement, pp. 127–137 (ed. J. Semal) Dordrecht: Martinus Nijhoff.

    Google Scholar 

  • Maluszynski, M., B.S. Ahloowalia and B. Sigurbjönsson. 1995. Application of in vivo and in vitro mu-tation techniques for crop improvement. Euphytica. 85: 303–315.

    Article  Google Scholar 

  • Martelli, G., I. Greco, B. Mezzetti and P. Rosati. 1993. Isozymic analysis of somaclonal variation among regenerants from apple rootstock leaf tissue. Acta Hort. 336: 381–387.

    Google Scholar 

  • Merkle, S.A., P.L. Chou and H.E. Sommer. 1988. Stability of highly repeated sequences in the DNA of embryogenic cultures of yellow poplar. In: Molecular Genetics of Forest Trees, pp. 85–88. (eds M.M. Cheliak and A.C. Yapa) Petawawa Natl. Forestry Inst. Inform. Rept. PI-X-80.

    Google Scholar 

  • Micke, A., B. Donini and M. Maluszynski. 1990. Induced mutations for crop improvement. Mutation Breed Rev, Vienna: FAO/IAEA, No. 7, pp. 1–41.

    Google Scholar 

  • Montagno, T.J., R.D. Lineberger and S.Z. Berry. 1989. Somaclonal and radiation induced variation in Lycopersicon esculentum. Environ Exp Bot. 29: 401–408.

    Article  Google Scholar 

  • Morgan, A. and E.C. Cocking. 1982. Plant regeneration from protoplasts of Lycopersicon esculentumMill. Z Pflanzenphysiol. 106:97–104.

    Google Scholar 

  • Nagata, T. and I. Takebe. 1971. Plating of isolated tobacco mesophyll protoplasts on agar medium. Planta. 99: 12–20.

    Article  Google Scholar 

  • Neale, D.B., M.E. Devey, K.D. Jermstad, M.R. Ahuja, M.C. Alosi and K.A. Marshall. 1992. Use of DNA markers in forest tree improvement research. New Forests. 6: 391–407.

    Article  Google Scholar 

  • Nehra, S.N., R.N. Chibbar, K.K. Kartha, R.S.S. Datla, W.I. Crosby and C. Stushnoff. 1990. Genetic transformation of strawberry by Agrobacterium tumefaciens using a leaf disk regeneration system. Plant Cell Rep. 9: 293–298.

    CAS  Google Scholar 

  • Niedz, R.P., S.M. Rutter, L.W. Handley and K.C. Sink. 1985. Plant regeneration from leaf protoplasts of six tomato cultivars. Plant Sci. 39: 199–204.

    Article  Google Scholar 

  • Owen, H.R., R.E. Veilleux, D. Levy and D.L. Ochs. 1988. Environmental, genotypic, and ploidy effects on endopolyploidization within a genotype of Solanum phureja and its derivatives. Genome. 30:506–510.

    Google Scholar 

  • Pijnacker, L.P. and K. Sree Ramulu. 1990. Somaclonal variation in potato: a karyotypic evaluation. Acta Bot Neerl. 39: 163–169.

    Google Scholar 

  • Potter, R. and M.G.K. Jones. 1991. An assessment of genetic stability of potato in vitro by molecular and phenotypic analysis. Plant Sci. 76: 239–248.

    Article  CAS  Google Scholar 

  • Prat, D., R. de Paepe and X.Q. Li. 1990. Somaclonal variation in Nicotiana sylvestris. In: Somaclonal Variation in Crop Improvement, I: Biotechnology in Agriculture and Forestry, 11, pp. 624–653 (ed. Y.P.S. Bajaj). Berlin: Springer-Verlag.

    Google Scholar 

  • Rani, V., A. Parida and S.N. Raina. 1995. Random amplified polymorphic DNA (RAPD) markers for genetic analysis in micropropagated plants of Populus deltoides Marsh. Plant Cell Rep. 14: 459–462.

    Article  CAS  Google Scholar 

  • Rao, P.S., V.A. Bapat and M. Mhatre. 1984. Regulatory factors for in vitro multiplication of sandalwood tree (Santalum album Linn.) II. Plant regeneration in nodal and internodal stem expiants and occurrence of somaclonal variations in tissue culture raised plants. Proc Indian Natl Acad Sci. 50: 196–202.

    Google Scholar 

  • Remotti, P.C. 1998. Somaclonal variation and in vitro selection for crop improvement. In: Somaclonal Variation and Induced Mutations in Crop Improvement (eds S.M. Jain, Jain D.S. Brar and B.S. Ahloowalia. Dordrecht: Kluwer. (This volume).

    Google Scholar 

  • Rietveld, R.C., P.M. Hasegawa and R.A. Bressan. 1991. Somaclonal variation in tuber disc-derived populations of potato. I. Evidence of genetic stability across tuber generations and diverse locations. Theor Appl Genet. 82: 430–440.

    Article  Google Scholar 

  • Rus-Kortekaas, W., M.J.M. Smulders, P. Arens and B. Vosman. 1994. Direct comparison of levels of genetic variation in tomato detected by a GACA-containing microsatellite probe and by random amplified polymorphic DNA. Genome. 37: 375–381.

    Article  PubMed  CAS  Google Scholar 

  • Sabir, A., H.J. Newbury, G. Todd, J. Catty and B.V. Ford-Lloyd. 1992. Determination of genetic stability using isozymes and RFLPs in beet plants regenerated in vitro. Theor Appl Genet. 84:113–117.

    CAS  Google Scholar 

  • Sadanandam, A. 1991. Induced synaptic mutant from mesophyll cell protoclones of dihaploid Solanum tuberosum. J Plant Physiol. 138: 107–110.

    Article  Google Scholar 

  • Sebastiani, L., A. Lenzi, C. Pugliesi and M. Fambrini. 1994. Somaclonal variation for resistance to Verticillium dahliae in potato (Solanum tuberosum L.) plants regenerated from callus. Euphytica. 80:5–11.

    Article  Google Scholar 

  • Secor, G.A. and J.F. Shepard. 1981. Variability of protoplast-derived potato clones. Crop Sci. 21: 102–105.

    Article  Google Scholar 

  • Shenoy, V.B. and I.K. Vasil. 1992. Biochemical and molecular analysis of plants derived from embryogenic tissue cultures of napier grass (Pennisetum purpureum K. Schum). Theor Appl Genet. 83: 947–955.

    Article  CAS  Google Scholar 

  • Shepard, J.F. 1981. Protoplasts as sources of disease resistance in plants. Annu Rev Phytopathol. 19:145–166.

    Article  CAS  Google Scholar 

  • Shepard, J.F. and R.E. Totten. 1977. Mesophyll cell protoplasts of potato. Isolation, proliferation and plant regeneration. Plant Physiol. 60: 313–316.

    Article  PubMed  CAS  Google Scholar 

  • Shepard, J.F., D. Bidney and E. Shahin. 1980. Potato protoplasts in crop improvement. Science. 208: 17–24.

    Article  PubMed  CAS  Google Scholar 

  • Sibi, M. 1976. La notion de programme genetique chez les vegetaux superieurs. II. Aspect experimental: obtention de variants par culture de tissus in vitro sur Lactuca sauva L., apparition de vigueur chez les croisements. Ann Amelior Plantes. 26: 523–547.

    Google Scholar 

  • Sibi, M. 1982. Heritable epigenic variations from in vitro tissue culture of Lycopersicon esculentum (var. Monalbo). In: Variability in Plants Regenerated from Tissue Culture, pp. 228–244 (eds E.D. Earle and Y. Demarly). New York: Praeger.

    Google Scholar 

  • Sibi, M., M. Biglary and Y. Demarly. 1984. Increase in the rate of recombinants in tomato (Lycopersicon esculentum L.) after in vitro regeneration. Theor Appl Genet. 68: 317–322.

    Article  Google Scholar 

  • Silvy, A. and Y. Mitteau. 1986. Diversification des varietes d’oeillet (Dianthus caryophyllus L.) par traitment mutagene. In: Proceeding, International Symposium on Nuclear Techniques and in vitro Culture for Plant Improvement, pp. 385–407. Vienna: IAEA.

    Google Scholar 

  • Skirvin, R.M. and J. Janick. 1976. Tissue culture-induced variation in scented Pelargonium spp. J Am Soc Hort Sci. 101:281–290.

    Google Scholar 

  • Skirvin, R.M., M. Norton and K.D. McPheeters. 1993. Somaclonal variation: has it proved useful for plant improvement? Acta Hort. 336: 333–340.

    Google Scholar 

  • Smith, S.S. and H.H. Murakishi. 1993. Restricted virus multiplication and movement of tomato mosaic virus in resistant tomato somaclones. Plant Sci. 89: 113–122.

    Article  Google Scholar 

  • Smulders, M.J.M., W. Rus-Kortekaas and B. Vosman. 1995. Tissue culture-induced DNA methylation polymorphisms in repetitive DNA of tomato calli and regenerated plants. Theor Appl Genet. 91: 1257–1264.

    Article  CAS  Google Scholar 

  • Sree Ramulu, K., P. Dijkhuis and S. Roest. 1983. Phenotypic variation and ploidy level of plants regenerated from protoplasts of tetraploid potato (Solanum tuberosum L. cv. ‘Bintje’). Theor Appl Genet. 65: 329–338.

    Article  Google Scholar 

  • Sree Ramulu, K., P. Dijkhuis, S. Roest, G.S. Bokelmann and B. de Groot. 1984. Early occurrence of genetic instability in protoplast cultures of potato. Plant Sci Lett. 36: 79–86.

    Article  Google Scholar 

  • Sree Ramulu, K., P. Dijkhuis, C.H. Hanisch ten Cate and B. De Groot. 1985. Patterns of DNA and chromosome variation during in vitro growth in various genotypes of potato. Plant Sci. 41: 69–78.

    Article  Google Scholar 

  • Sree Ramulu, K., P. Dijkhuis, S. Roest, G.S. Bokelmann and B. De Groot. 1986. Variation in phenotype and chromosome number of plants regenerated from protoplasts of dihaploid and tetraploid potato. Plant Breed. 97: 119–128.

    Article  Google Scholar 

  • Sree Ramulu, K., P. Dijkhuis and S. Roest. 1989. Patterns of phenotypic and chromosome variation in plants derived from protoplast cultures of monohaploid, dihaploid and diploid genotypes and in somatic hybrids of potato. Plant Sci. 60: 101–110.

    Article  Google Scholar 

  • Stephens, P.A., CD. Nickell and J.M. Widholm. 1991. Agronomic evaluation of tissue-culture-derived soybean plants. Theor Appl Genet. 82: 633–635.

    Article  Google Scholar 

  • Taylor, P.W.J., J.R. Geijskes, H.L. Ko, T.A. Fraser, R.J. Henry and R.G. Birch. 1995. Sensitivity of random amplified polymorphic DNA analysis to detect genetic change in sugarcane during tissue culture. Theor Appl Genet. 90: 1169–1173.

    Article  CAS  Google Scholar 

  • Taylor, RJ. and G.A. Secor. 1990. Potato protoplast-derived callus tissue challenged with Erwinia carotovora subsp. carotovora: survival, growth and identification of resistant callus lines. J Phytopathol. 129: 228–236.

    Article  Google Scholar 

  • Taylor, R.J., G.A. Secor, C.L. Ruby and P.H. Orr. 1993. Tuber yield, soft rot resistance, bruising resistance and processing quality in a population of potato (cv. Crystal) somaclones. Am Potato J. 70: 117–130.

    Article  Google Scholar 

  • Thomas, CM., P. Vos, M. Zabeau, D.A. Jones, K.A. Norcott, B.P. Chadwick and J.D.G. Jones. 1995. Identification of amplified restriction fragment polymorphism (AFLP) markers tightly linked to the tomato Cf-9 gene for resistance to Cladosporium fulvum. Plant J. 8: 785–794.

    Article  CAS  Google Scholar 

  • Thomas, E., S.W.J. Bright, J. Franklin, V.A. Lancaster, B.I. Miflin and R. Gibson. 1982. Variation amongst protoplast-derived potato plants (Solanum tuberosum cv. Maris Bard). Theor Appl Genet. 62: 65–68.

    Google Scholar 

  • van den Bulk, R.W., J. Jansen, W.H. Lindhout and H.J.M. Loffler. 1991. Screening of tomato somaclones for resistance to bacterial canker (Clavibacter michiganensis subsp. michiganensis). Plant Breed. 107: 190–196.

    Article  Google Scholar 

  • van den Bulk, R.W., H.J.M. Loffler, W.H. Lindhout and M. Koornneef. 1990. Somaclonal variation in tomato: effect of expiant source and a comparison with chemical mutagenesis. Theor Appl Genet. 80: 817–825.

    Article  Google Scholar 

  • van Everdink, W.J. and L.P. Pijnacker. 1994. Initial acytokinesis during leaf protoplast culture of dihaploid and tetraploid Solanum tuberosum and diploid S. bulbocastanum Potato Res. 37: 413–421.

    Article  Google Scholar 

  • van Swaaij, A.C., H. Nijdam, E. Jacobsen and W.J. Feenstra. 1987. Increased frost tolerance and amino acid content in leaves, tubers and leaf callus of regenerated hydroxyproline resistant potato clones. Euphytica. 36: 369–380.

    Article  Google Scholar 

  • Wisman, E., M.S. Ramanna and M. Koornneef. 1993. Isolation of a new paramutagenic allele of the sulfurea locus in the tomato cultivar Moneymaker following in vitro culture. Theor Appl Genet. 87: 289–294.

    Article  Google Scholar 

  • Wolff, D.W., R.E. Veilleux and C.J. Jensen. 1986. Evaluation of anther-derived Streptocarpus x hybridus and their progeny. Plant Cell Tissue Org Cult. 6: 167–172.

    Article  Google Scholar 

  • Wolter, A.M.A., H.C.H. Schoenmakers, S. Kamstra, J. van Eden, M. Koornneef and J.H. de Jong. 1994. Mitotic and meiotic irregularities in somatic hybrids of Lycopersicon esculentum and Solanum tuberosum. Genome. 37: 726–735.

    Article  Google Scholar 

  • Zhila, E.D., A.A. Kuchko and V.A. Sidorov. 1987. Chromosomal variability of potato protoclones. Tsitol Genet. 21: 105–108.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jain, S.M., Ahloowalia, B.S., Veilleux, R.E. (1998). Somaclonal Variation in Crop Improvement. In: Jain, S.M., Brar, D.S., Ahloowalia, B.S. (eds) Somaclonal Variation and Induced Mutations in Crop Improvement. Current Plant Science and Biotechnology in Agriculture, vol 32. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9125-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9125-6_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4956-8

  • Online ISBN: 978-94-015-9125-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics