Skip to main content

Dynamic Estimation Tests of Decaying Isotropic Turbulence

  • Conference paper
Direct and Large-Eddy Simulation III

Part of the book series: ERCOFTAC Series ((ERCO,volume 7))

Abstract

A large-eddy simulation based upon adding estimated, dynamically based backscatter terms to the Smagorinsky subgrid model is shown to be feasible. The model is based upon estimating the subgrid velocity from the high wavenumber aliasing residue of the resolved scale nonlinear terms and the interaction of this estimated velocity with the resolved scales. The objective is to model an intense event in a 2563 direct numerical simulation of decaying flow in a periodic box with random initial conditions before turbulence has developed. Rather than the second order dissipation or enstrophy, higher order norms of the velocity derivative field, the skewness, flatness and peak vorticity, are used to identify the intermittent event. Comparisons with a 2563 DNS truncated to 323 show that the Smagorinsky model does not capture this event, while the estimation model combined with the Smagorinsky model does. Enstrophy and dissipation around the intense event are also more realistic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clark,R.A.,Ferziger,J.H.,and Reynolds,W.C. (1979) Evaluation of subgrid-scale models using an accurately simulated turbulent flow J. Fluid Mech. 911-.

    Article  ADS  MATH  Google Scholar 

  2. Clark,T.L.,Hall,W.D.,Kerr,R.M.,Middleton,D.,Radke,L.,Ralph,F.M.,and Nei- man,P.J. (1998) J. Atmos. Sci On the origins of aircraft damaging clear-air turbulence during the 9 December 1992 Colorado downslope windstorm: Numerical simulations and comparison with observations. (in press).

    Google Scholar 

  3. Domaradzki,J.A.,and Saiki,E.M. (1997) A subgrid-scale model based on the estimation of unresolved scales of turbulence. Phys. Fluids 9, 2148–2164.

    Article  ADS  Google Scholar 

  4. Domaradzki,J.A.,Liu,W.,and Brachet,M.E. (1993) An analysis of subgrid-scale interactions in numerically simulated turbulence Phys. Fluids A5, 1747-.

    ADS  Google Scholar 

  5. Domaradzki,J.A.,Liu,W.,Härtel,C.,and Kleiser,L. (1994) Energy Transfer in Numerically Simulated Wall-Bounded Turbulent Flows. Phys. Fluids A6, 1583-.

    Article  ADS  Google Scholar 

  6. Germano,M. (1992) Turbulence: the filtering approach. J. Fluid Mech. 238, 325-.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Ghosal,S.,Lund,T.S.,Moin,P.,and Akselvoll,K. (1995) A dynamic localization model for large-eddy simulation of turbulent flows. J. Fluid Mech. 286, 229–255.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Herring,J.R.,and Kerr,R.M. (1993) Development of enstrophy and spectra in numerical turbulence. Phys. Fluids A5, 2792–2798.

    ADS  Google Scholar 

  9. Kerr,R.M. (1993a) Evidence for a singularity of the three-dimensional, incompressible Euler equations. Phys. Fluids A5, 1725–1746.

    MathSciNet  ADS  Google Scholar 

  10. Kerr,R.M. (1998) A new role for vorticity and singular dynamics in turbulence In Nonlinearity, Chaos and Turbulence. (ed. D.N. Riahi ), WIT Press.

    Google Scholar 

  11. Kerr,R.M.,Domaradzki,J.A.,and Barbier,G. (1996) Small-scale properties of nonlinear interactions and subgrid-scale energy transfer in isotropic turbulence. Phys. Fluids 8, 197-.

    Google Scholar 

  12. Kraichnan,R.H. (1976) J. Atmos. Sci. 33 1521-Eddy viscosity in two and three dimensions..

    Google Scholar 

  13. Leith,C.E. (1990) Stochastic backscatter in a subgrid-scale mode: plane shear mixing layer Phys. Fluids A2, 297-.

    Google Scholar 

  14. Mason,P.J.,and Thornson,D.J. (1992) Stochastic backscatter in large-eddy simulations of boundary layers J. Fluid Mech. 242, 51-.

    Google Scholar 

  15. Schumann,U. (1975) Subgrid scale model for finite difference simulations of turbulent flows. J. Comp. Phys. 18, 376–404.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Smagorinsky,J. (1963) General circulation experiments with the primitive equations. Mon. Weath. Rev. 93, 99-.

    Google Scholar 

  17. Sullivan,P.P.,McWilliams,J.C.,and Moeng,C.-H. (1994) A subgrid-scale model for large-eddy simulation of planetary boundary-layer flow. Boundary-Layer Meteorol. 71, 247–276.

    Google Scholar 

  18. Van Driest,E.R. (1956) On the turbulent flow near a wall. J. Areo. Sci. 23, 1007-1011.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Kerr, R.M. (1999). Dynamic Estimation Tests of Decaying Isotropic Turbulence. In: Voke, P.R., Sandham, N.D., Kleiser, L. (eds) Direct and Large-Eddy Simulation III. ERCOFTAC Series, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9285-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9285-7_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5327-5

  • Online ISBN: 978-94-015-9285-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics