Skip to main content

Ventricular Expression of the Atrial Regulatory Myosin Light Chain Gene

  • Chapter
Cardiovascular Specific Gene Expression

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 214))

  • 67 Accesses

Abstract

The techniques of molecular biology have opened new diagnostic pathways in clinical cardiology. These pathways include the molecular genetic analysis of families with cardiac diseases like hypertrophic cardiomyopathy and dilated cardiomyopathy (DCM). Although four chromosomal loci are associated with the inherited form of DCM, the genes involved are still unknown [1]. In most patients with dilated cardiomyopathy inheritance appears less important and the etiology remains obscure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Doevendans PA, van Dantzig J, Meijer H, Schaap C. Molecular genetics of human cardiomyopathies. In: Peters R, Piek J, eds. Molecular cardiology in clinical perspective. 1 ed. Amsterdam: Knoll; 1997: 33–53.

    Google Scholar 

  2. Wollert KC, Taga T, Saito M, et al. Cardiotrophin-1 activates a distinct form of cardiac muscle cell hypertrophy. Assembly of sarcomeric units in series VIA gp130/leukemia inhibitory factor receptor-dependent pathways. J Biol Chem 1996; 271: 9535–45.

    Article  PubMed  CAS  Google Scholar 

  3. Knowlton KU, Baracchini E, Ross RS, et al. Co-regulation of the atrial natriuretic factor and cardiac myosin light chain-2 genes during alpha-adrenergic stimulation of neonatal rat ventricular cells. Identification of cis sequences within an embryonic and a constitutive contractile protein gene which mediate inducible expression. J Biol Chem 1991; 266: 7759–68.

    PubMed  CAS  Google Scholar 

  4. Gotschall K, Hunter JJ, Tanaka N, et al. Ras-dependent pathways induce obstructive hypertrophy in echo-selected transgenic mice. Proc Natl Acad Sci USA 1997; 94: 4710–15.

    Article  Google Scholar 

  5. Leskinen H, Vuolteenaho O, Ruskoaho H. Combined inhibition of endothelin and angiotensin II receptors blocks volume load-induced cardiac hormone release. Circ Res 1997; 80: 114–23.

    Article  PubMed  CAS  Google Scholar 

  6. Wallen T, Landahl S, Hedner T, Nakao K, Saito Y. Brain natriuretic peptide predicts mortality in the elderly. Heart 1997; 77: 264–67.

    Article  PubMed  CAS  Google Scholar 

  7. Yamamoto K, Burnett-JC J, Jougasaki M, et al. Superiority of brain natriuretic peptide as a hormonal marker of ventricular systolic and diastolic dysfunction and ventricular hypertrophy. Hypertension. 1996; 28: 988–94.

    Article  PubMed  CAS  Google Scholar 

  8. Kubalak SW, Miller-Hance W, O’Brien T, Dyson E, Chien K. Chamber-specification of atrial myosin light chain-2 expression precedes septation during mouse cardiogenesis. J Biol Chem 1994; 269: 16961–70.

    PubMed  CAS  Google Scholar 

  9. O’Brien TX, Lee KJ, Chien KR. Positional specification of ventricular myosin light chain 2 expression in the primitive murine heart tube. Proc Natl Acad Sci USA 1993; 90: 5157–61.

    Article  PubMed  Google Scholar 

  10. Dyson E, Sucov HM, Kubalak SW, et al. Atrial-like phenotype is associated with embryonic ventricular failure in retinoid X receptor alpha -/- mice. Proc Natl Acad Sci USA 1995; 92: 7386–90.

    Article  PubMed  CAS  Google Scholar 

  11. Kubalak S, Doevendans PA, Rockuran H, et al. Molecular analysis of cardiac muscle diseases based on mouse genetics. In: Adolph KW, ed. Human molecular genetics, U ed. Orlando: Academic Press; 1996: 470–87.

    Chapter  Google Scholar 

  12. Sanger F, Coulson AR. A rapid method for determining sequences in DNA by primed synthesis and DNA polymerase. J Mol Biol 1975; 94: 444–48.

    Article  Google Scholar 

  13. De Vries JE, Vork MM, Roemen THM, De Jong YF, Van der Vusse GJ, van Bilsen M. Saturated, but not mono-unsaturated fatty acids induce apoptotic cell deathnin neonatal rat ventricular myocytes. J Lipid Res 1997; 38: 1384–94.

    PubMed  Google Scholar 

  14. Nordeen SK. Luciferase reporter gene vectors for analysis of promoter and enhancers. Biotech 1988; 6: 454–57.

    CAS  Google Scholar 

  15. Chen C, Okayama H. High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol 1987; 7: 2745–52.

    PubMed  CAS  Google Scholar 

  16. Cherrington JM, Mocarski ES. Human cytomegalovirus transactivates the a promoter-enhancer via an 18-base pair repeat element. J Virol 1989; 63: 1435–40.

    PubMed  CAS  Google Scholar 

  17. de Wet JR, Wood KV, DeLuca M, Helinski D, Subramani S. Firefly luciferase gene: structure and expression in mammalian cells. Mol Cell Biol 1986; 7: 725–37.

    Google Scholar 

  18. Iwaki K, Sukhatme VP, Shubeita HE, Chien KR. Alpha-and beta-adrenergic stimulation induces distinct patterns of immediate early gene expression in neonatal rat myocardial cells. fos/jun expression is associated with sarcomere assembly; Egr-1 induction is primarily an alpha 1-mediated response. J Biol Chem 1990; 265: 13809–17.

    PubMed  CAS  Google Scholar 

  19. Sabath DE, Broome HE, Prystowsky MB. Glyceraldehyde-3-phosphate dehydrogenase mRNA is a major interleukin 2 induced transcript in a cloned T-helper lymphocyte. Gene 1990; 91: 185–91.

    Article  PubMed  CAS  Google Scholar 

  20. Andreone TL, Printz RL, Pilkis SJ, Magnuson MA, Granner DK. The amino acid sequence of rat liver glucokinase deduced from cloned cDNA. J Biol Chem 1989; 264: 363–69.

    PubMed  CAS  Google Scholar 

  21. Postic C, Niswender KD, Decaux JF, et al. Cloning and characterization of the mouse glucokinase gene locus and identification of distal liver-specific DNase I hypersensitive sites. Genomics 1995; 29: 740–50.

    Article  PubMed  CAS  Google Scholar 

  22. Barton PJ, Cohen A, Robert B, et al. The myosin alkali light chains of mouse ventricular and slow skeletal muscle are indistinguishable and are encoded by the same gene. J Biol Chem 1985; 260: 8578–84.

    PubMed  CAS  Google Scholar 

  23. Shubeita HE, McDonough PM, Harris AN, et al. Endothelin induction of inositol phospholipid hydrolysis, sarcomere assembly, and cardiac gene expression in ventricular myocytes. A paracrine mechanism for myocardial cell hypertrophy. J Biol Chem 1990; 265: 20555–62.

    PubMed  CAS  Google Scholar 

  24. Brown LA, Nunez DJ, Brookes CI, Wilkins MR. Selective increase in endothelin-1 and endothelin A receptor subtype in the hypertrophied myocardium of the aorto-venacaval fistula rat. Cardiovasc Res 1995; 29: 768–74.

    PubMed  CAS  Google Scholar 

  25. Hilal Dandan R, Merck DT, Lujan JP, Brunton LL. Coupling of the type A endothelin receptor to multiple responses in adult rat cardiac myocytes. Mol Pharmacol 1994; 45: 118–390.

    Google Scholar 

  26. McDonough PM, Brown JH, Glembotski CC. Phenylephrine and endothelin differentially stimulate cardiac PI hydrolysis and ANF expression. Am J Physiol 1993; 264: 625–30.

    Google Scholar 

  27. Sei CA, Glembotski CC. Calcium dependence of phenylephrine-, endothelin-, and potassium chloride-stimulated atrial natriuretic factor expression form long term primary neonatal rat atrial cardiocytes. J Biol Chem 1990; 265: 7166–72.

    PubMed  CAS  Google Scholar 

  28. Shubeita HE, Martinson EA, van Bilsen M, Chien KR, Brown JH. Transcriptional activation of the cardiac myosin light chain 2 and atrial natriuretic factor genes by protein kinase C in neonatal rat ventricular myocytes. Proc Natl Acad Sci USA 1992; 89: 1305–09.

    Article  PubMed  CAS  Google Scholar 

  29. Soonpaa MH, Field LJ. Assessment of cardiomyocyte DNA synthesis in normal and injured adult mouse hearts. Am J Physiol 1997; 272: 220–26.

    Google Scholar 

  30. Lembo G, Hunter JJ, Chien KR. Signaling pathways for cardiac growth and hypertrophy. Recent advances and prospects for growth factor therapy. Ann NY Acad Sci 1995; 752: 115–27.

    Article  PubMed  CAS  Google Scholar 

  31. Thorbum A, Thorbum J, Chen SY, et al. HRas-dependent pathways can activate morphological and genetic markers of cardiac muscle cell hypertrophy. J Biol Chem 1993; 268: 2244–49.

    Google Scholar 

  32. van Bilsen M. Signal transduction revisited. Cardiovasc Res 1997; 36: 310–22.

    Article  PubMed  Google Scholar 

  33. Fuller SJ, Davies EL, Gillespie Brown J, Sun H, Tonks NK. Mitogen-activated protein kinase phosphatase 1 inhibits the stimulation of gene expression by hypertrophie agonists in cardiac myocytes. Biochem J 1997; 323: 313–19.

    PubMed  CAS  Google Scholar 

  34. Doevendans PA, Hunter JJ, Lembo G, Wollert KC, Chien KR. Strategies for studying cardiovascular diseases in transgenic mice and gene-targeted mice. In: Monastersky GM, Robl JM, eds. Strategies in transgenic animal science. 1st ed. Washington: American Society For Microbiology; 1995: 107–44.

    Google Scholar 

  35. Thorbum J, Carlson M, Mansour SJ, Chien KR, Ahn NG, Thorbum A. Inhibition of a signaling pathway in cardiac muscle cells by active mitogen-activated protein kinase kinase. Mol Biol Cell 1995; 6: 1479–90.

    Google Scholar 

  36. Grohe C, Kahlert K, Briesemeister G, Stimpel M, Vetter H, Neyses L. Myocardial and myogenic cells contain functional estrogen recepotors. Circulation 1994; 90: 28–98.

    Google Scholar 

  37. Mangelsdorf DJ, Evans RM. The RXR heterodimers and orphan receptors. Cell 1995; 83: 841–50.

    Article  PubMed  CAS  Google Scholar 

  38. Beato M, Herrlich P, Schutz G. Steroid hormone receptors: many actors in search of a plot. Cell 1995; 83: 851–57.

    Article  PubMed  CAS  Google Scholar 

  39. Grodstein F, Stampfer MJ, Colditz GA, et al. Postmenopausal hormone therapy and mortality. N Engl J Med 1997; 336: 1769–75.

    Article  PubMed  CAS  Google Scholar 

  40. Pelzer T, Shamim A, Neyses L. Estrogen effects in the heart. Mol Cell Biochem 1996; 161: 307–13.

    Article  Google Scholar 

  41. Williams JK, Kim YD, Adams MR, Chen MF, Myers AK, Ramwell PW. Effects of estrogen on cardiovascular responses of premenopausal monkeys. J Pharmacol Exp Ther 1994; 271: 671–76.

    PubMed  CAS  Google Scholar 

  42. Molkentin JD, Lin Q, Duncan SA, Olson EN. Requirement of the transcription factor GATA 4 for heart tube formation and ventricular morphogenesis. Genes Dev 1997; 11: 1061–72.

    Article  PubMed  CAS  Google Scholar 

  43. Lin Q, Schwarz J, Bucana C, Olson EN. Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science 1997; 276: 1404–08.

    Article  PubMed  CAS  Google Scholar 

  44. Lyons I, Parsons LM, Hartley L, Li R, Andrews JE, Robb L, Harvey RP. Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2–5. Genes Dev 1995; 9: 1654–66.

    Article  PubMed  CAS  Google Scholar 

  45. Chen Z, Glenn A, Soriano P. Transcriptional enhancer factor 1 disruption by a retroviral gene trap leads to heart defects and embryonic lethality in mice. Genes Dev 1994; 8: 2293–301.

    Article  PubMed  CAS  Google Scholar 

  46. Field LJ. Atrial-natriuretic factor-SV40 large T antigen transgenes produce atrial tumors and cardiac arrhythmias in mice. Science 1988; 239: 10029–33.

    Google Scholar 

  47. Knowlton KU, Rockman HA, Itani M, Vovan A, Seidman CE, Chien KR. Divergent pathways mediate the induction of ANF transgenes in neonatal and hypertrophie ventricular myocardium. J Clin Invest 1995; 96: 1311–18.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Doevendans, P.A., Bronsaer, R., Ruiz-Lozano, P., van Dantzig, J.M., van Bilsen, M. (1999). Ventricular Expression of the Atrial Regulatory Myosin Light Chain Gene. In: Doevendans, P.A., Reneman, R.S., van Bilsen, M. (eds) Cardiovascular Specific Gene Expression. Developments in Cardiovascular Medicine, vol 214. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9321-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9321-2_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5189-9

  • Online ISBN: 978-94-015-9321-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics