Skip to main content

Artificial Neural Networks in Subsurface Characterization

  • Chapter
Artificial Neural Networks in Hydrology

Part of the book series: Water Science and Technology Library ((WSTL,volume 36))

  • 551 Accesses

Abstract

Successful management of subsurface environmental resources is highly dependent on the quality of relevant characterization and monitoring. In particular, the ability to identify patterns in raw data measurements and to extract valuable spatial information from different measurement sources is critical to answering questions posed by management. These questions range from “what are the pathways by which receptors may be exposed to (human or ecological) health risks” to “can I determine from existing measurement data whether a buried facility is failing”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, B.D.O. and J.B. Moore. (1979) Optimal Filtering, New Jersey: Prentice-Hall.

    Google Scholar 

  • ASCE Task Committee on Geostatistical Techniques in Geohydrology of the Ground Water Hydrology Committee of the ASCE Hydraulics Division. (1990) Review of geostatistics in geohydrology, I: basic concepts, Journal of Hydraulic Engineering, 116, 5, 612.

    Article  Google Scholar 

  • Bottou L., C. Cortes, J. S. Denker, H. Drucker, I. Guyon, L.D. Jackel, Y. Lecun, U.A. Muller, E. Sackinger, P.Y. Simard, and V. Vapnik. (1994) In Proceedings of the 12 th Iinternational Conference on Pattern Recognition, Jerusalem: IEEE Computer Society Press Vol. II, 77–82.

    Google Scholar 

  • Chen, C.H. (ed.) (1991) On the Relationships Between Statistical Pattern Recognition and Artificial Neural Networks, Singapore: World Scientific Publishing Co.

    Google Scholar 

  • Cheng, B. and D. Titterington. (1994) Statist. Sci. 9, 2–54.

    Article  Google Scholar 

  • Cover, T.M. and P.E. Hart. (1967) Nearest neighbor pattern classification, IEEE Trans. Information Theory, IT-13, 21–27.

    Article  Google Scholar 

  • Dayhoff, J. (1990) Neural Network Architectures: An Introduction, Van Nostrand Reinhold.

    Google Scholar 

  • de Marsily, G. (1986) Quantitative Hydrology: Groundwater Hydrology for Engineers, New York: Academic Press Inc.

    Google Scholar 

  • Delhomme, J.P. (1979) Spatial variability and uncertainty in groundwater flow parameters: a geostatistical approach, Water Resour. Res., 15 269–280.

    Article  Google Scholar 

  • Dowd, P.A. (1992) A review of recent developments in geostatistics, Computers and Geosciences, 17, 10, 1481.

    Article  Google Scholar 

  • Duda, R.O. and P.E. Hart. (1973) Pattern Classification and Scene Analysis, New York: John Wiley.

    Google Scholar 

  • Fisher, R.A. (1936) The use of multiple measurements in taxonomic problems, Ann. Eugenics, 7, 179–88.

    Article  Google Scholar 

  • Goldstein, M. and W.R. Dillan. (1978) Discrete Discriminant Analysis, New York: Wiley.

    Google Scholar 

  • Griffiths, J.C. (1967) Scientific Method in Analysis of Sediments, New York: McGraw-Hill.

    Google Scholar 

  • Grossberg, S. (1969) Some networks that can learn, remember, and reproduce any number of complicated space-time patterns, Journal ofMathematics and Mechanics, 19, 53–91.

    Google Scholar 

  • Grossberg, S. (1983) Studies ofMind and Brain, Boston: Reidel.

    Google Scholar 

  • Hecht-Nielsen, R. (1987a) Counterpropagation networks, IEEE International Conference on Neural Networks, vol. 2, San Diego, CA, July 24–27, 19–32.

    Google Scholar 

  • Hecht-Nielsen, R. (1987b) Counterpropagation networks, Applied Optics, 26(23), 4979–4984.

    Article  Google Scholar 

  • Hecht-Nielsen, R. (1988) Applications of counterpropagation networks, Neural Networks, 1, 131–139.

    Article  Google Scholar 

  • Isaaks, E.H. and R.M. Srivastava (1989) An Introduction to Applied Geostatistics, New York: Oxford University Press.

    Google Scholar 

  • James, M. (1985) Classification Algorithms, London: Collins Sons & Co. Ltd.

    Google Scholar 

  • Journel, A. G. (1989) Fundamentals of Geostatistics in Five Le sson s, Short Course Geol. Series, American Geophysical Unition, Washington, DC, 8, 38 pp., 1989.

    Book  Google Scholar 

  • Kirkpatrick, S., C.D. Gelat, and M.P. Vecchi. (1983) Optimization by simulated annealing, Science, 220, 4598, 671–680.

    Article  Google Scholar 

  • Koch, G.S. and R.F. Link. (1971) Statistical Analysis of Geological Data, New York: Dover Publications, Inc.

    Google Scholar 

  • Kohonen, T. (1988) Self-organization and Associative Memory, 2nd edition. New York: Springer-Verlag.

    Book  Google Scholar 

  • Leondes, C.T. (Ed.) (1998) Image Processing and Pattern Recognition. California: Academic Press.

    Google Scholar 

  • Matheron, G. (1971) The Theory of Regionalized Variables and Its Applications, Ecole Nationale Superieure des Mines de Paris, Les Cahiers du Centre de Morphologie Mathematique, 5.

    Google Scholar 

  • Michie D., D.J. Spiegelhalter, and C.C. Taylor (Eds.) (1994) Machine Learning, Neural and Statistical Classification. Ellis Horwood Limited.

    Google Scholar 

  • Miller, R.L. and J.S. Kahn. (1962) Statistical Analysis in the Geological Sciences, New York: John Wiley & Sons.

    Google Scholar 

  • Minsky M. and S. Papert. (1988) Perceptrons — Expanded Edition. MIT Press.

    Google Scholar 

  • Myers, D.E. (1982) Matrix formulation of co-kriging, Math Geol., 14, 249–257.

    Article  Google Scholar 

  • Myers, D.E. (1984) Co-kriging — New Developments, Geostatistics for Natural Resources Characterization, In G. Vesley et al. (eds.) Hingham, Mass: D. Reidel, 10 pages.

    Google Scholar 

  • Parker, D.B. (1982) Learning Logic, Invention Report S81–64, File 1, Office of Technology Licensing, Stanford University.

    Google Scholar 

  • Rao, C.R. (1973) Linear Statistical Inference and Its Application, New York: John Wiley and Sons.

    Book  Google Scholar 

  • Ripley, B.D. (1994) Neural Networks and Related methods for Classification, J. Roy. Statist. Soc. Ser. B 56(3), 409–456.

    Google Scholar 

  • Rizzo, D.M. (1994) Optimal Groundwater Remediation Designs and Characterization of Aquifer Properties Using Artificial Neural Networks, Ph.D. Dissertation, Department of Civil and Environmental Engineering, University of Vermont.

    Google Scholar 

  • Rizzo, D.M., and D.E. Dougherty. (1994) Characterization of aquifer properties using artificial neural networks, neural kriging, Water Resources Research, 30(2), 483–497.

    Article  Google Scholar 

  • Rumelhart, D.E., J.L. McClelland and PDP Research Group. (1986) Parallel Distributed Processing: Explorations in the Microstructure ofCognition, I: Foundations, Cambridge, MA: MIT Press.

    Google Scholar 

  • Sejnowski, T.J. and C.R. Rosenberg (1987) Parallel networks that learn to pronounce English text, Compex Syst., 145–168.

    Google Scholar 

  • Tompson, A.F.B., E.M. Nichols, P.F. McKereghan, and M.C. Small (1991) Summary of Preliminary Groundwater Simulations in the Livermore Regional Modeling Study: CFEST Finite Element Code, Technical Report UCRCL-AR-107049, Environmental Protection Department, Lawrence Livermore National Laboratory, March.

    Google Scholar 

  • Wackernagel, H. (1989) Overview of methods for coregionalization analysis, in M. Armstrong (ed.) Geostatistics, Boston Mass.: Kluwer Academic.

    Google Scholar 

  • Wasserman, P.D. (1989) Neural Computing: Theory and Practice, Van Nostrand Reinhold.

    Google Scholar 

  • Werbos, P.J. (1974) Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences, Thesis, Harvard University.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rizzo, D.M., Dougherty, D.E. (2000). Artificial Neural Networks in Subsurface Characterization. In: Govindaraju, R.S., Rao, A.R. (eds) Artificial Neural Networks in Hydrology. Water Science and Technology Library, vol 36. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9341-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9341-0_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5421-0

  • Online ISBN: 978-94-015-9341-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics