Skip to main content

Abstract

In the past years different methods have been developed for the genetic transformation of plants and plant cells. The two most successful ones are direct introduction of genes using the particle gun and via a (binary) vector transferred by Agrobacterium. In the Chapters 3 and 4 these methods and some applications are described in more detail. Agrobacterium tumefaciens is widely used for transformation of plants. A major restriction is the limited host range, which is mostly dicotyledonous plants, and even in this group not all plants. The particle gun is, in principle, applicable to any plant species. Though transformation is feasible, the regeneration of a plant from the transformed cells is often a difficult task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Doran PM (Ed). Hairy roots. Harwood Academic Publishers, Amsterdam, 1997.

    Google Scholar 

  2. Verpoorte R, van der Heijden R, van Gulik WM and ten Hoopen HJG.: Plant biotechnology for the production of alkaloids: present status and prospects. The Alkaloids. Vol. 40. A. Brossi, Editor. Academic Press, San Diego, 1991: 1–187.

    Google Scholar 

  3. Romeo JT (Ed). Functionality of food phytochemicals. Recent Advances in Phytochemistry vol. 31. Plenum Press, New York, 1997.

    Google Scholar 

  4. Romeo JT, Saunders JA and Barbosa P (Eds). Phytochemical diversity and redundancy in ecological interactions. Recent Advances in Phytochemistry vol. 30. Plenum Press, New York 1996.

    Google Scholar 

  5. Romeo JT, Downum KR and Verpoorte R (Eds). Phytochemical signals and plant-microbe interactions. Recent Advances in Phytochemistry vol. 32. Plenum Press, New York, 1998.

    Google Scholar 

  6. Harborne JB (Ed). Biochemical aspects of plant and animal coevolution. Ann. Proc. Phytochem. Soc. Europe vol. 15. Academic Press London 1978.

    Google Scholar 

  7. Harborne JB and Tomas-Barberan FA (Eds). Ecological chemistry and biochemistry of plant terpenoids. Oxford Science Publications, Oxford, 1991: 159–208.

    Google Scholar 

  8. VanEtten HD, Mansfield JW, Bailey JA et al. Two classes of plant antibiotics: phytoalexins versus phytoanticipins. Plant Cell 1994; 6: 1191–1192.

    PubMed  CAS  Google Scholar 

  9. Smith CJ.: Accumulation of phytoalexins: defence mechanism and stimulus response system. New Phytol 1996; 132: 1–45.

    Article  CAS  Google Scholar 

  10. Verberne MC, Budi Muljono RA and Verpoorte R.: Salicylic acid biosynthesis. Biochemistry and Molecular Biology of Plant Hormones. New Comprehensive Biochemistry. Libbenga KR, Hall M and Hooykaas PJJ (Eds) Elsevier, Amsterdam, in press.

    Google Scholar 

  11. Verberne M, Verpoorte R, van Tegelen LJP, et al. Salicylic acid pathway genes and their use for the introduction of resistance in plants. International patent application no. 962003189.

    Google Scholar 

  12. Dey PM and Harborne JB.: Methods in Plant Biochemistry, Vol 9. Enzymes of secondary metabolism (Lea, Pi, Ed). Academic Press, San Diego 1993.

    Google Scholar 

  13. Galneder E, Rueffer M, Wanner G, et al. Alternative final steps in berberine biosynthesis in Coptis japonica cell cultures. Plant Cell Rep. 1988; 7: 1–4.

    Article  CAS  Google Scholar 

  14. Vetter HP, Mangold U, Schroeder G, et al. Molecular analysis and heterologous expression of an inducible Cytochrome P-450 Protein from Periwinkle (Catharanthus roseus L.). Plant Pysiol 1992; 100: 998–1007.

    Article  CAS  Google Scholar 

  15. U. Mangold U, Eichel J, Batschauer A, et al. Gene and cDNA for plant cytochrome P450 proteins (Cyp 72 family) from Catharanthus roseus and transgenic expression of the gene and a cDNA in tobacco and Arabidopsis thaliana. Plant Sci 1994; 96: 129–133.

    Article  CAS  Google Scholar 

  16. Meijer AH, Souer E, Verpoorte R, et al. Isolation of cytochrome P-450 cDNA clones from the higher plant Catharanthus roseus by a PCR strategy. Plant Mol Biol 1993; 22: 379–383.

    Article  PubMed  CAS  Google Scholar 

  17. Shuler MA.: Plant cytochrome P450 monooxygenases. Crit Rev Plant Sci 1996; 15: 235–284.

    Google Scholar 

  18. Durst F and O’Keefe DP.: Plant Cytochromes-P450. Special Issue Drug Metabolism and Drug Interactions. 1995; 12: 171–389.

    Article  CAS  Google Scholar 

  19. Mizutani M, Ward E, Daisaku O.: Cytochrome P450 superfamily in Arabidopsis thaliana: isolation of cDNAs, differential expression and RFLP mapping of multiple cytochrome P450. Plant Mol Biol 1998; 37: 39–52.

    Article  PubMed  CAS  Google Scholar 

  20. Hashimoto T and Yamada Y.: Alkaloid biogenesis: molecular aspects. Annu Rev Plant Physiol Plant Mol Biol 1994; 45: 257–285.

    Article  CAS  Google Scholar 

  21. Kutchan TM.: Alkaloid biosynthesis-the basis for metabolic engineering of medicinal plants. Plant Cell 1995; 7: 1059–1070.

    PubMed  CAS  Google Scholar 

  22. Verpoorte R, van der Heijden R and Moreno, PRIT.: Biosynthesis of terpenoid indole alkaloids in Catharanthus roseus cells. The Alkaloids. Vol. 49. Cordell GA ( Ed) Academic Press, San Diego, 1997: 221–299.

    Google Scholar 

  23. Kutchan TM.: Molecular genetic technique applied to the analysis of enzymes of alkaloid biosynthesis. Rec Adv Phytochem 1994; 28: 35–59.

    CAS  Google Scholar 

  24. Stoeckigt J.: Biosynthesis in Rauwolfia serpentina. Modern aspects of an old medicinal plant. The Alkaloids, vol. 47. Cordell GA ( Ed) Academic Press, San Diego 1995: 115–172.

    Google Scholar 

  25. Galneder E and Zenk MH.: In: “Progress in Plant Cellular and Molecular Biology” Nijkamp HJJ, van der Plas LHW and Aartrijk J ( Eds) Kluwer, Dordrecht 1990: 754.

    Book  Google Scholar 

  26. Kutchan TM, Dittrich H, Bracher D et al. Enzymology and molecular biology of alkaloid biosynthesis. Tetrahedron 1991; 47: 5945–5954.

    Article  CAS  Google Scholar 

  27. Mueller MJ and Zenk MH.: The norcoclaurine pathway is operative in berberine biosynthesis in Coptis japonica. Planta Med 1992;58,:24–527.

    Google Scholar 

  28. Kutchan TM and Zenk MH.: Enzymology and molecular biology of benzophenanthridine alkaloid biosynthesis. J Plant Res 1993; 3: 165–173.

    Google Scholar 

  29. Zenk MH.: Chasing the enzymes of alkaloid biosynthesis. In: “Organic reactivity: Physical and biological aspects”. Golding BT, Griffin RJ and Maskill H (Eds) Chemical Society Press, London 1995: 89–109.

    Google Scholar 

  30. Zenk MH.: Chasing the enzymes of secondary metabolism: plant cell cultures as a pot of gold. Phytochemistry 1991; 30: 3861–3863.

    Article  CAS  Google Scholar 

  31. Mol JNM, Holton TA and Koes RE.: Floriculture: genetic engineering of commercial traits. Trends Biotechnol 1995; 13: 350–355.

    Article  CAS  Google Scholar 

  32. Holton TA and Cornish EC.: Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 1995; 7: 1071–1083.

    PubMed  CAS  Google Scholar 

  33. Mulder-Krieger T and Verpoorte R.: Anthocyanins as flower pigments. Possibilities for flower colour modification. Kluwer Academic Publishers, Dordrecht, 1994, 154 pp.

    Book  Google Scholar 

  34. Dixon RA and Paiva NL.: Stress-induced phenylpropanoid metabolism. Plant Cell 1995; 7: 1085–1097.

    PubMed  CAS  Google Scholar 

  35. Lloyd AM, Walbot V and Davis RW.: Arabidopsis and Nicotiana anthocyanin production activated by maize regulators R and Cl. Science 1992; 258: 1773–1775.

    Article  PubMed  CAS  Google Scholar 

  36. Grotewold E, Chamberlin M, Snook M, et al. Engineering secondary metabolism in maize cells ectopic expression of transcription factors. Plant Cell 1998; 10: 721–740.

    PubMed  CAS  Google Scholar 

  37. Martin C.: Transcription factors and the manipulation of plant traits. Curr Biol 1996; 7: 130–138.

    CAS  Google Scholar 

  38. Gollwitzer J, Lenz R, Hampp N, et al. The transformation of neopine to codeinone in morphine biosynthesis proceeds non-enzymatically. Tetrahedron Lett 1993; 34: 5703–5706.

    Article  CAS  Google Scholar 

  39. Poulsen C and Verpoorte R.: Roles of chorismate mutase, isochorismate synthase and anthranilate synthase in plants. Phytochemistry 1991; 30: 377–386.

    Article  CAS  Google Scholar 

  40. Romero RM, Roberts MF and Phillipson JD.: Anthranilate synthase in microorganisms and plants. Phytochemistry 1995; 39: 263–276.

    Article  PubMed  CAS  Google Scholar 

  41. Li J and Last RL.: The Arabidopsis thaliana trp5 mutant has a feedback-resistant anthranilate synthase and elevated soluble tryptophan. Plant Physiol 1996; 110: 51–59.

    Article  PubMed  CAS  Google Scholar 

  42. Brotherton JE, Hauptmann RM and Widholm JM.: Anthranilate synthase forms in plants and cultured cells of Nicotiana tabacum. Planta 1986; 168: 214–221.

    CAS  Google Scholar 

  43. Carlson JE and Widholm JM.: Separation of two forms of anthranilate synthase from 5-methyltryptophansusceptible and -resistant cultured Solanum tuberosum cells. Physiol Plant 1978; 44: 251–255.

    Article  CAS  Google Scholar 

  44. Kreps JA, Ponappa T, Dong TW, et al. Molecular Basis of a-Methyltryptophan Resistance in amt-1, a Mutant of Arabidopsis thaliana with Altered Tryptophan Metabolism. Plant Physiol 1996; 110: 1159–1165.

    Article  PubMed  CAS  Google Scholar 

  45. Rossi JJ.: Controlled, targeted, intracellular expression of ribozymes: progress and problems. TIBTECH 1995; 13: 301–306.

    Article  CAS  Google Scholar 

  46. Whitelam GC and Cockburn W.: Antibody expression in transgenic plants. Trends Plant Sci 1996; 1: 268–272.

    Article  Google Scholar 

  47. Richardson JH and Marasco WA.: Intracellular antibodies: development and therapeutic potential. TIBTECH 1995; 13: 306–310.

    Article  CAS  Google Scholar 

  48. Haynes MR, Stura EA, Hilvert D, et al. Routes to catalysis: structure of a catalytic antibody and comparison with its natural counterpart. Science 1994; 263: 646.

    Article  PubMed  CAS  Google Scholar 

  49. Dos Santos R, Schripsema J and Verpoorte R.: Ajmalicine metabolism in Catharanthus roseus cell cultures. Phytochemistry 1994; 35: 677–681.

    Article  Google Scholar 

  50. Dagnino D, Schripsema J, Verpoorte R.: Alkaloid metabolism in Tabernaemontana divaricata cell suspension cultures. Phytochemistry 1992; 32: 325–329.

    Article  Google Scholar 

  51. Dagnino D, Schripsema J and Verpoorte R.: Comparison of terpenoid indole alkaloid production and degradation in two cell lines of Tabernaemontana divaricata. Plant Cell Rep 1993; 13: 95–98.

    Article  CAS  Google Scholar 

  52. Dagnino D, Schripsema J and Verpoorte R.: Terpenoid indole alkaloid biotransformation of suspension cultures of Tabernaemontana divaricata. Phytochemistry 1994; 35: 671–676.

    Article  CAS  Google Scholar 

  53. Schripsema J, Dagnino D, Dos Santos R, et al. Breakdown of indole alkaloids in suspension cultures of Tabernaemontana divaricata and Catharanthus roseus. Plant Cell Tiss Org Cult 1994; 38: 301–307.

    Article  Google Scholar 

  54. Stafford A, Smith L and Fowler MW.: Regulation of product synthesis in cell cultures of Catharanthus roseus (L) G.Don. Plant Cell Tiss Org Cult 1985; 4: 83–94.

    Article  CAS  Google Scholar 

  55. Hall RD and Yeoman MM.: Temporal and spatial heterogeneity in the accumulation of anthocyanins in cell cultures of Catharanthus roseus (L.) G.Don. J Exp Bot 1986; 37: 48.

    Article  CAS  Google Scholar 

  56. Hall RD and Yeoman MM.: Factors determining anthocyanin yield in cell cultures of Catharanthus roseus (L.) G. Don. New Phytol 1986; 103: 33–43.

    Article  CAS  Google Scholar 

  57. Sato F. and Yamada Y.: High berberine producing cultured Coptis japonica cells. Phytochemistry 1984; 23: 281–285.

    Article  CAS  Google Scholar 

  58. Sato F, Endo T, Hashimoto T, et al. Production of berberine in cultures of Coptis japonica cells in “Plant Tissue Culture 1982” (Fujiwara A, Ed) Mazuren, Tokyo, 1982: 319.

    Google Scholar 

  59. Hara Y, Yamagata H, Morimoto T, et al. Flow cytometric analysis of cellular berberine contents in high-and low-producing cell lines of Coptis japonica obtained by repeated selection. Planta Med 1989; 55: 151–154.

    Article  PubMed  CAS  Google Scholar 

  60. Salas A and Mendez C.: Genetic manipulation of antitumor agent biosynthesis to produce novel drugs. TIBTECH 1998; 16: 475–482.

    Article  CAS  Google Scholar 

  61. Madduri K, Kennedy J, Rivola G, et al. Production of the antitumor drug epirubicin (4“-epidoxorubicin) and its precursor by a genetically engineered strain of Streptomyces peucetius. Nature Biotechnol 1998; 156: 69–74.

    Article  Google Scholar 

  62. Zook M, Johnson K, Hohn T, et al. Structural characterization of 15-hydroxytrichodiene, a sesquiterpenoid produced by transformed tobacco cell suspension cultures expressing a trichodiene synthase gene from Fusarium sporotrichoides. Phytochemistry 1996; 43: 1235–1237.

    Article  PubMed  CAS  Google Scholar 

  63. Jorgensen RA.: Cosuppression, flower color patterns and metastable gene expression states. Science 1995; 268: 686–689.

    Article  PubMed  CAS  Google Scholar 

  64. Bourque JE.: Antisense strategies for genetic manipulation in plants. Plant Sci 1995; 105: 125–149.

    Article  CAS  Google Scholar 

  65. Ni W, Paiva NI, and Dixon RA.: Reduced lignin in transgenic plants containing a caffeic acid 0-methyltransferase antisense gene. Transgenic Res 1994; 3: 120–126.

    Article  CAS  Google Scholar 

  66. Miao Z-H and Lam E.: Targeted disruption of the TGA 3 locus in Arabidopsis. Plant J 1995; 7: 359–365.

    Article  PubMed  CAS  Google Scholar 

  67. Morton R and Hooykaas PJ.: Nuclear Matric Attachment Regions and Transgene Expression in Plants. Plant Physiol 1996; 110: 15–21.

    Google Scholar 

  68. Chavadej S, Brisson N, McNeil JN, et al. Redirection of tryptophan leads to production of low indole glucosinolate canola. Proc Natl Acad Sci USA 1994; 91: 2166–2170.

    Article  PubMed  CAS  Google Scholar 

  69. Ibrahim RK, Chavadej S and Luca V.: Engineering altered glucosinolate biosynthesis by two alternative strategies. Rec Adv Phytochem 1994; 25: 125–152.

    Google Scholar 

  70. Berlin J, Fecker L, Herminghaus S, et al. Genetic modification of plant secondary metabolism: alteration of product levels by overexpression of amino acid decarboxylases in “Studies Plant Sci 4, Advances in Plant Biotechnology” ( Ryu DDY and Furusaki S, Eds). Elsevier, 1994: 57.

    Google Scholar 

  71. Hain R, Bieseler B, Kindl H, et al. Expression of a stilbene synthase gene in Nicotiana tabacum results in synthesis of the phytoalexin resveratrol. Plant Mol Biol 1990; 15: 325–335.

    Article  PubMed  CAS  Google Scholar 

  72. Hain R, Reif HJ, Krause E, et al. Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 1993; 361: 153–156.

    Article  PubMed  CAS  Google Scholar 

  73. Herminghaus S, Schreier PH, McCarthy JEG, et al. Expression of a bacterial lysine decaboxylase gene and transport of the protein into chloroplasts of transgenic tobacco. Plant Mol Biol 1991; 17: 475–486.

    Article  PubMed  CAS  Google Scholar 

  74. Songstad DD, Kurz WGW and Nessler CL.: Tyramine accumulation in Nicotianum tabacum transformed with a chimeric tryptophan decarboxylase gene. Phytochemistry 1991; 30: 3245–3246.

    Article  CAS  Google Scholar 

  75. Finnegan J and McElroy D.: Transgene inactivation: Plants fight back! Bio/technology 1994; 12: 883–888.

    Article  Google Scholar 

  76. Meyer P.: Understanding and controling transgene expression. Trends Biotechnol 1995; 13: 332–337.

    Article  CAS  Google Scholar 

  77. Spiker S and Thompson WF.: Nuclear Matric Attachment Regions and Transgene Expression in Plants. Plant Physiol 1996; 110: 15–21.

    PubMed  CAS  Google Scholar 

  78. Matzke MA and Matzke AJM.: How and Why Do Plants Inactivate Homologous (Trans) genes? Plant Physiol 1995; 107: 679–685.

    PubMed  CAS  Google Scholar 

  79. Gatz C, Frohberg C and Wendenburg R.: Stringent repression and homogeneous de-repression by tetracycline of a modified CaMV 35S promoter in intact transgenic tobacco plants. Plant J 1992; 2: 397–404.

    PubMed  CAS  Google Scholar 

  80. Schena M, Lloyd AM and Davis RW.: A steroid-inducible gene expression system for plant cells. Proc Natl Acad Sci USA 1991; 88: 10421–10425.

    Article  PubMed  CAS  Google Scholar 

  81. Mett VL, Lochhead LP and Reynolds PHS.: Copper-controlable gene expression system for whole plants. Proc Natl Acad Sci USA 1993; 90: 4567–4571.

    Article  PubMed  CAS  Google Scholar 

  82. Ohta S and Verpoorte R.: Some accounts of variation (heterogeneity and/or instability) in secondary metabolite production by plant cell cultures. Ann Rep Nat Sci Home Econ 1992; 32: 9–23.

    Google Scholar 

  83. Whitmer S, Canel C, Hallard D, et al. Influence of precursor availablity on alkaloid accumulation by transgenic cell lines of Catharanthus roseus. Plant Physiol 1998; 116: 853–857.

    Article  PubMed  CAS  Google Scholar 

  84. Canel C, Lopez-Cardoso MI, Whitmer S, et al. Effects of over-expression of strictosidine synthase and tryptophan decarboxylase on alkaloid production by cell cultures of Catharanthus roseus. Planta 1998; 205: 414–419.

    Article  PubMed  CAS  Google Scholar 

  85. Berlin J, Ruegenhagen C, Dietze P, et al. Increased production of serotonin by suspension and root cultures of Peganum harmala transformed with a tryptophan decarboxylase eDNA clone from Catharanthus roseus. Transgenic Res 1993; 2: 336–344.

    Article  CAS  Google Scholar 

  86. Stephanopoulos G and Vallin B.: Network rigidity and metabolic engineering in metabolite overproduction. Science 1991; 252: 1675–1681.

    Article  PubMed  CAS  Google Scholar 

  87. Schmid J and Amrhein N.: Molecular organization of the shikimate pathway in higher plants. Phytochemistry 1995; 39: 737–749.

    Article  CAS  Google Scholar 

  88. Yao K, De Luca V and Brisson N.: Creation of a metabolic sink for tryptophan alters the phenylpropanoid pathway and the susceptibility of potato to Phytophthora infestans. Plant Cell 1995; 7: 1787–1799.

    PubMed  CAS  Google Scholar 

  89. Hashimoto T and Yamada Y. Proc 7th Annu Penn State Symp Plant Physiol Am Soc Plant Physiol Press, Rockville, 1992: 111.

    Google Scholar 

  90. Hashimoto T, Hayashi A, Amano Y, et al. Hyoscyamine 43-hydroxylase, an enzyme involved in tropane alkaloid biosynthesis, is localized ar the pericycle of the root. J Biol Chem 1991; 266: 4648–4653.

    PubMed  CAS  Google Scholar 

  91. Hashimoto T, Yun D-J and Yamada Y.: Production of tropane alkaloids in genetically engineered root cultures. Phytochemistry 1993; 32: 713–718.

    Article  CAS  Google Scholar 

  92. Yun D-J, Hashimoto T and Yamada Y.: Metabolic engineering of medicinal plants; Transgenic Atropa belladonna with an improved alkaloid composition. Proc Natl Acad Sci USA 1992; 89: 11799–11803.

    Article  PubMed  CAS  Google Scholar 

  93. Siebert M, Sommer S, Li S-M, et al. Genetic engineering of plant secondary metabolism. Accumulation of 4-hydroxybenzoate glucosides results from the expression of the bacterial ubiC gene in tobacco. Plant Physiol 1996; 112: 811–819.

    Article  PubMed  CAS  Google Scholar 

  94. Chapell J.: Biochemistry and molecular biology of the isoprenoid biosynthetic pathway in plants. Annu Rev Plant Physiol Mol Biol 1995; 46: 521–547.

    Article  Google Scholar 

  95. Hrazdina G and Wagner G.: Metabolic pathways as enzyme complexes: evidence for the synthesis of phenylpropanoids and flavonoids in membrane associated enzyme complexes. Arch Biochem Biophys 1985; 237; 88–100.

    Article  PubMed  CAS  Google Scholar 

  96. Srere PA.: Complex of sequential metabolic enzymes. Annu Rev Biochem 1987; 56: 21–56.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Verpoorte, R., Van Der Heijden, R., Memelink, J. (2000). General Strategies. In: Verpoorte, R., Alfermann, A.W. (eds) Metabolic Engineering of Plant Secondary Metabolism. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9423-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9423-3_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5475-3

  • Online ISBN: 978-94-015-9423-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics