Skip to main content

Abstract

Synthesis and processing of nanostructures will employ a diverse array of material types—organic, inorganic, and biological—well beyond examples already realized. The driving forces will be creativity, applications, opportunities, and economics in broad areas of science, medicine, and technology. Increasing emphasis will be placed on synthesis and assembly at a very high degree of precision, achieved through innovative processing. The result will be control of the size, shape, structure, morphology, and connectivity of molecules, supermolecules, nano-objects and nanostructured materials and devices. Integration of top-down physical assembly concepts with bottom-up chemical and biological assembly concepts may be required to create fully functional nanostructures that are operational at mesoscopic scales. The combination of new nanoscale building blocks and new paradigms in assembly strategies will provide nanostructured materials and devices with new, unprecedented capabilities limited only by our imagination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alivisatos, A.P., K.P. Johnsson, X.G. Peng, T.E. Wilson, C.J. Loweth, M.P. Brochez, and P.G. Schultz. 1996. Organization of nanocrystal molecules using DNA. Nature 382: 609–611.

    Article  CAS  Google Scholar 

  • Alivisatos, A.P., P.F. Barbara, A.W. Castleman, J Chang, D.A. Dixon, M.L. Klein, G.L. McLendon, J.S. Miller, M.A. Ratner, P.J. Rossky, S.I. Stupp, and M.E. Thompson. 1998. From molecules to materials: Current trends and future directions. Advanced Materials 10: 1297–1336.

    Article  Google Scholar 

  • Antonelli, D.M. and J.Y.Ying. 1996. Mesoporous materials. Current Opinion in Colloid and Interface Science 1: 523–529.

    Article  CAS  Google Scholar 

  • Braun, E., Y. Eichen, U Sivan, and G. BenYoseph. 1998. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 391: 775–778.

    Article  CAS  Google Scholar 

  • Bruchez, M., M. Moronne, P. Gin, S. Weiss, and A.P. Alivisatos. 1998. Semiconductor nanocrystals as fluorescent biological labels. Science 281: 2013–2016.

    Article  CAS  Google Scholar 

  • Brus, L. 1996. Semiconductor colloids: Individual nanocrystals, opals and porous silicon. Current Opinion in Colloid and Interface Science 1: 197–201.

    Article  CAS  Google Scholar 

  • Chan, W.C.W. and S.M. Nie. 1998. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281: 2016–2018.

    Article  CAS  Google Scholar 

  • Chen, J., M.A. Hamon, H. Hu, Y. Chen, A.M. Rao, P.C. Eklund, and R.C. Haddon. 1998. Solution properties of single-walled carbon nanotubes. Science 282: 9598.

    Google Scholar 

  • Chou, S.Y., P.R. Krauss, and P.J. Renstrom. 1996. Imprint lithography with 25nanometer resolution Science 272: 85.

    Article  CAS  Google Scholar 

  • Chou, S.Y., P.R. Krauss, W. Zhang, L. Guo and L. Zhuang. 1997. Sub-10 nm imprint lithography and applications. Invited, J. Vac. Sci. Technol. B 15 (6): 2897.

    Article  CAS  Google Scholar 

  • Chou, S.Y. and L. Zhuang. 1997. Unpublished. Chou, S.Y. 1998. U.S. Patent No. 5,772, 905.

    Google Scholar 

  • Chou, S.Y. and L. Zhuang. 1999. Lithographically induced self-assembly of periodic polymer micropillar arrays. J. Vac. Sci. Technol. B 17 (6): 3197–3202.

    Article  CAS  Google Scholar 

  • Dai et al. 1996. Nanotubes as nanoprobes in scanning probe microscopy. Nature 384: 147.

    Google Scholar 

  • de Heer et al. 1995. A carbon nanotube field-emission electron source. Science 270: 1179.

    Article  Google Scholar 

  • Guo et al. 1995. Chem. Phys. Lett. 243: 49.

    Google Scholar 

  • Kiehl, R.A., M Yamaguchi, O. Ueda, N. Horiguchi, and N. Yokoyama. 1996. Patterned self-assembly of one-dimensional arsenic particle arrays in GaAs by controlled precipitation. Appl. Phys. Lett. 68: 478–480.

    Article  CAS  Google Scholar 

  • Liu et al. 1998. Fullerene pipes. Science 280: 1253.

    Google Scholar 

  • Martin, T.P. 1996. Shells of atoms. Physics Reports-Review section of Physics Letters 273: 199–241.

    CAS  Google Scholar 

  • Matthews, O. A., A.N. Shipway, and J.F. Stoddart. 1998. Dendrimers—branching out from curiosities into new technologies. Progress in Polymer Science 23: 156.

    Article  Google Scholar 

  • McClelland, J., R.E. Scholten, E.C. Palm, and R.J. Celotta. 1993. Laser-focused atomic deposition. Science 262: 877–880.

    Article  CAS  Google Scholar 

  • Mucic, R. C., J.J. Storhoff, C.A. Mirkin, and R.L. Letsinger. 1998. DNA-directed synthesis of binary nanoparticle network materials. Journal of the American Chemical Society 120: 12674–12675.

    Article  CAS  Google Scholar 

  • Reed, M.A., C. Zhou, C.J. Muller, T.P. Burgin, and J. M. Tour. 1997. Conductance of a molecular junction. Science 278: 252–254.

    Article  CAS  Google Scholar 

  • Resch, R., C. Baur, A. Bugacov, B. E. Koel, A. Madhukar, and A. A. G. Requicha. 1998. Building and manipulating 3-D and linked 2-D structures of nanoparticles using scanning force microscopy. Langmuir, Vol. 14, No. 23, pp. 6613–6616, November 10.

    Google Scholar 

  • Requicha, A.A.G. 1999. Nanoparticle patterns. J. of Nanoparticle Research. Vol. 1, No. 3, pp. 321–323.

    Article  Google Scholar 

  • Rinzler et al. 1995. Science 269: 1550.

    Google Scholar 

  • Stupp, S.I., ed. 1998. Interdisciplinary macromelecular science and engineering. In Proc. NSF Workshop. U. of Illinois.

    Google Scholar 

  • Stupp, S.I., V. LeBonheur, K. Walker, L.S. Li, K.E. Huggins, M. Keser, and A. Amstutz. 1997. Supramolecular materials: Self-organized nanostructures. Science 276: 384–389.

    Article  CAS  Google Scholar 

  • Tenrones, M., W.K. Hsu, H.W. Kroto, and D.R.M. Walton. 1999. Nanotubes: A revolution in materials science and electronics, Vol. 199, 189–234.

    Google Scholar 

  • Thess et al. 1996. Crystalline ropes of metallic carbon nanotubes. Science 273: 483.

    Google Scholar 

  • Tomalia, D.A. 1994. Starburst cascade dendrimers—fundamental building-blocks for a new nanoscopic chemistry set. Advanced Materials 6: 529–539.

    Article  CAS  Google Scholar 

  • Wong et al. 1998. Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology. Nature 394: 52.

    Google Scholar 

  • Xia, Y. et al. 1997. Adv. Mater. 9: 147.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. C. Roco (IWGN Chair)R. S. Williams (private sector)P. Alivisatos (academe)

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tirrell, M., Requicha, A., Friedlander, S., Hagnauer, G. (2000). Synthesis, Assembly, and Processing of Nanostructures. In: Roco, M.C., Williams, R.S., Alivisatos, P. (eds) Nanotechnology Research Directions: IWGN Workshop Report. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9576-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9576-6_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5416-6

  • Online ISBN: 978-94-015-9576-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics