Skip to main content

Abstract

In this chapter we describe a variety of syndromic obesities. These are distinct obesities characterized by a specific phenotypic pattern and in many cases a single specific genetic cause. In some cases, the specific genes involved have been discovered and provide insights into both potential treatments for afflicted individuals and the mechanisms which underlie body weight regulation. The known obesity syndromes include dominant and recessive modes of inheritance, polygenic obesities and imprinted genetic transmission. Comparisons between selected animal modes of obesity and human obesity syndromes are presented. These comparisons illustrate the important cross-species effects of certain genes, point out potential candidate genes with as yet undemonstrated roles in human obesity, and highlight possible physiological pathways for further investigation in human obesity studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberti K and Zimmet P (1998) Definition, diagnosis, and classification of diabetes mellitus and its complications. Part 1: Diagnosis, and classification of diabetes mellitus, provisional report of a WHO consultation. Diabet Med 15: 539–553

    Article  PubMed  CAS  Google Scholar 

  • Allison DB, Packer-Muner W, Pietrobelli A, Alfonso VC, Faith MS. Obesity and developmental disabilties: Pathoegenisis and treatment. Journal of Physical and Developmental Disabilities 1998;10: (3) 215–255.

    Article  Google Scholar 

  • Barlow D. Gametic imprinting in mammals. Science 1995; 270: 1610–1613.

    Article  PubMed  CAS  Google Scholar 

  • Brown A, Dolan J, Willi S, et al. Endogenous mutations in human uncoupling protein 3 alter its functional properties. FEBS Lett. 1999; 464 :189–193 .

    Article  PubMed  CAS  Google Scholar 

  • Carmi R, Rokhlina T, Kwitek-Black A, et al. Use of a DNA pooling strategy to identify a human obesity syndrome locus on chromosome 15. Hum Mol Genet 1995; 4: 9–13 .

    Article  PubMed  CAS  Google Scholar 

  • Cassidy S. Prader-Willi syndrome. Curr Probl Pediatr 1984; 14: 1–55.

    PubMed  CAS  Google Scholar 

  • Cattanach B, Barr J, Beechey C, et al. A candidate model for Angelman syndrome in the mouse. Mamm Genome 1997; 8 :472–478.

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Koyama K, Yuan X, et al. Disappearance of body fat in normal rats induced by adenovirus-mediated leptin gene therapy. Proc Natl Acad Sci 1996; 93: 14795–14799.

    Article  PubMed  CAS  Google Scholar 

  • Chua Jr. SC, Chung WK, Wu-Peng S, et al. Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science 1996; 271: 994–996.

    Article  PubMed  CAS  Google Scholar 

  • Clement K, Vaisse C, Lahlou N, et al. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 1998;392:398–401.

    Article  PubMed  CAS  Google Scholar 

  • Cohen B, Novick D, Rubinstein M. Modulation of insulin activities by leptin. Science 1996; 274: 1185–188.

    Article  PubMed  CAS  Google Scholar 

  • Coleman DL. Obese and diabetes: Two mutant genes causing diabetes-obesity syndromes in mice. Diabetologia 1978; 14: 141–148.

    Article  PubMed  CAS  Google Scholar 

  • Collins S, Kuhn C, Petro A, et al. Role of leptin in fat regulation. Nature 1996;380:677.

    Article  PubMed  CAS  Google Scholar 

  • Considine RV, Sinha MK, Heiman ML, et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med 1996; 334 : 292–295 .

    Article  PubMed  CAS  Google Scholar 

  • DeGroot L, Cahill Jr. G, Martini L, Nelson D, eds. Endocrinology. Philadelphia, PA: W.B. Saunders Company; 1995.

    Google Scholar 

  • Dittrich B, Buiting K, Korn B, et al. Imprint switching on human chromosome 15 may involve alternative transcripts of the SNRPN gene. Nature Genet 1996; 14: 163–170.

    Article  PubMed  CAS  Google Scholar 

  • Farooqi I, Yeo G, Keogh J, et al. Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency. J Clin Invest 2000; 106: 271–279.

    Article  PubMed  CAS  Google Scholar 

  • Flier JS. The adipocyte: Storage depot or node on the energy information superhighway? Cell 1995;80:15–18.

    Article  PubMed  CAS  Google Scholar 

  • Frederich RC, Hamann A, Anderson S, et al. Leptin levels reflect body lipid content in mice: Evidence for diet-induced resistance to leptin action. Nat Med 1995; 1: 1311–1314.

    Article  PubMed  CAS  Google Scholar 

  • Graham M, Shutter J, Sarmiento U, et al. Overexpression of Agrt leads to obesity in transgenic mice. Nat Genet 1997; 17: 273–274.

    Article  PubMed  CAS  Google Scholar 

  • Gu W, Tu Z, Kleyn PW, Kissebah A, Duprat L, Lee J, Chin W, Maruti S, Deng N, Fisher SL, Franco LS, Burn P, Yagaloff KA, Nathan J, Heymsfield SB, Albu J, Pi-Sunyer FX, Allison DB. Identification and Functional Analysis of Novel Human Melanocortin-4 Receptor Variants. Diabetes 1999; 48: 635–639.

    Article  PubMed  CAS  Google Scholar 

  • Gunay-Aygun M, Cassidy S, Nicholls R. Prader-Willi and other syndromes associated with obesity and mental retardation. Behav Genet 1997; 27: 307–324.

    Article  PubMed  CAS  Google Scholar 

  • Halaas JL, Gajiwala KS, Maffei M, et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science 1995; 269: 543–546.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton BS, Paglia D, Kwan AYM, Dietel M. Increased obese mRNA expression in omental fat cells from massively obese humans. Nat Med 1995; 1: 953–956.

    Article  PubMed  CAS  Google Scholar 

  • Harris RB. Role of set-point theory in regulation of body weight. FASEB J 1990; 4: 3310–3318.

    Google Scholar 

  • Heo M, Leibel RL, Boyer BB, Chung WK, Koulu M, Kar vonen MK, Pesonen U, Rissanen A, Laakso M, Uusitupa MIJ, Chagnon Y, Bouchard C, Donohoue PA, Burns TL, Shuldiner AR, Silver K, Andersen RE, Pedersen O, Echwald S, Sørensen TIA, Behn P, Permutt MA, Jacobs KB, Elston RC, Hoffman DJ, Allison DB. Pooling analysis of genetic data: the association of leptin receptor (LEPR) polymorphisms with variables related to human adiposity. Submitted.

    Google Scholar 

  • Hervey GR. The effects of lesions in the hypothalamus in parabiotic rats. J Physiol 1959;145: 336–352.

    PubMed  CAS  Google Scholar 

  • Hinney A, Schmidt A, Nottebom K, et al. Several mutations in the melanocortin-4 receptor gene including a nonsense and a frameshift mutation associated with dominantly inherited obesity in humans. J Clin Endocr Metab 1999; 84: 1483–1486.

    Article  PubMed  CAS  Google Scholar 

  • Holder Jr J, Butte N, Zinn A. Profound obesity associated with a balanced translocation that disrupts the SIM 1 gene. Hum Mol Genet 2000; 9: 101–108.

    Article  PubMed  CAS  Google Scholar 

  • Huszar D, Lynch C, Dunmore J, et al. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 1997; 88: 131–141.

    Article  PubMed  CAS  Google Scholar 

  • Iida M, Murakami T, Ishida K, et al. Substitution at codon 269 (glutamine to proline) of the leptin receptor (OB-R) cDNA is the only mutation found in the Zucker fatty (fa/fa) rat. Biochem Biophys Res Comm 1996; 224: 597–604.

    Article  PubMed  CAS  Google Scholar 

  • Ingalls A, Dickie M, Snell G. Obese, a new mutation in the house mouse. J Hered 1950;41:317–318.

    PubMed  CAS  Google Scholar 

  • Izraeli S, Metzker A, Horev G, et al. Albright hereditary osteodystrophy with hypothyroidism, normocalcemia, and normal Gs protein activity: a family presenting with congenital osteoma cutis. Am J Med Genet 1992; 43: 764–767.

    Article  PubMed  CAS  Google Scholar 

  • Karl M, Lamberts S, Koper J, et al. Cushing’s disease preceded by generalized glucocorticoid resistance: clinical consequences of a novel, dominant-negative glucocorticoid receptor mutation. Proc Assoc Am Physicians 1996; 108: 296–307.

    PubMed  CAS  Google Scholar 

  • Kennedy GC. The role of depot fat in the hypothalamic control of food intake in the rat. Procedures of the Royal Society ofBritain Biological Sciences 1953; 140: 578–592.

    Article  CAS  Google Scholar 

  • Krude H, Biebermann H, Luck W, et al. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet 1998; 19: 155–157.

    Article  PubMed  CAS  Google Scholar 

  • Krude I, Gruters I. Implications of Proopiomelanocortin (POMC) Mutations in Humans: The POMC Deficiency Syndrome. Trends Endocrinol Metab 2000; 11: 15–22.

    Article  PubMed  CAS  Google Scholar 

  • Kurtz T, Morris R, Pershadsingh H. Zucker fatty rat as a genetic model of obesity and hypertension. Hypertension 1989;13 :896–901.

    Article  PubMed  CAS  Google Scholar 

  • Kuslich C, Kobori J, Mohapatra G, et al. Prader-Willi syndrome is caused by disruption of the SNRPN gene. Am J Hum Genet 1999;64:70–76.

    Article  PubMed  CAS  Google Scholar 

  • Kwitek-Black A, Carmi R, Duyk G, et al. Linkage of Bardet-Biedl syndrome to chromosome 16q and evidence for non-allelic genetic heterogeneity. Nat Genet 1993; 5: 392–396.

    Article  PubMed  CAS  Google Scholar 

  • Lee G-H, Proenca R, Montez JM, et al. Abnormal splicing of the leptin receptor in diabetic mice. Nature 1996; 379: 632–635.

    Article  PubMed  CAS  Google Scholar 

  • Leppert M, Baird L, Anderson K, et al. Bardet-Biedl syndrome is linked to DNA markers on chromosome 11 q and is genetically heterogeneous. Nat Genet 1994; 7: 108–112.

    Article  PubMed  CAS  Google Scholar 

  • Lonnqvist F, Arner P, Nordfors L, Schalling M. Overexpression of the obese (ob) gene in adipose tissue of human obese subjects. Nat Med 1995; 1: 950–953.

    Article  PubMed  CAS  Google Scholar 

  • MacDonald H, Wevrick R. The necdin gene is deleted in Prader-Willi syndrome and is imprinted in human and mouse. Hum Mol Genet 1997; 6: 1873–1878.

    Article  PubMed  CAS  Google Scholar 

  • Maffei M, Halaas J, Ravussin E, et al. Leptin levels in human and rodent: Measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med 1995; 1: 1155–1161.

    Article  PubMed  CAS  Google Scholar 

  • Miller M, Duhl D, Vrieling H, et al. Cloning of the mouse agouti gene predicts a secreted protein ubiquitously expressed in mice carrying the lethal yellow mutation. Genes Dev 1993; 7 :454–67.

    Article  PubMed  CAS  Google Scholar 

  • Montague C, Farooql S, Whitehead J, et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 1997; 387: 903–908.

    Article  PubMed  CAS  Google Scholar 

  • Mueller G, Ertl J, Gerl M, Preibisch G. Leptin impairs metabolic actions of insulin in isolated rat adipocytes. J Biol Chem 1997; 272: 10585–10593.

    Google Scholar 

  • Muoio D, Dohn G, Fiedorek F, et al. Leptin directly alters lipid partioning in skeletal muscle. Diabetes 1997; 46: 1360–1363.

    Article  PubMed  CAS  Google Scholar 

  • Naggert J, Fricker L, Varlamov O, et al. Hyperproinsulinaemia in obese fat/fat mice associated with a carboxypeptidase E mutation which reduces enzyme activity. Nat Genet 1995; 10: 135–142.

    Article  PubMed  CAS  Google Scholar 

  • Online Mendelian Inheritance in Man, OMIM (TM). In.: McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University (Baltimore, MD) National Center for Biotechnology Information and National Library of Medicine, (Bethesda, MD); 2000.

    Google Scholar 

  • O’Rahilly S, Gray H, Humphreys PJ, et al. Brief report: impaired processing of prohormones associated with abnormalities of glucose homeostasis and adrenal function. New Eng J Med 1995; 333: 1386–1390.

    Article  PubMed  Google Scholar 

  • Pellymounter MA, Cullen MJ, Baker MB, et al. Effects of the obese gene product on body weight regulation in ob/ob mice. Science 1995; 269: 540–543.

    Article  Google Scholar 

  • Phillips M, Liu Q, Hammond H, et al. Leptin receptor missense mutation in the fatty Zucker rat. Nat Genet 1996; 13: 18–19.

    Article  PubMed  CAS  Google Scholar 

  • Reaven G. Bantinglecture 1988: Role of insulin resistance in human disease. Diabetes 1988; 37: 1595–1607.

    Article  Google Scholar 

  • Roybal R. Obese Girl Suffers From Rare Genetic Defect. In: AlbuquerqueJournal. Albuquerque, NM; 2000.

    Google Scholar 

  • Saiardi A, Borrelli E. Absence of dopaminergic control on melanotrophs leads to Cushing’s-like syndrome in mice. Mol Endocrinol 1998; 12: 1133–1139.

    Article  PubMed  CAS  Google Scholar 

  • Sheffield V, Carmi R, Kwitek-Black A, et al. Identification of a Bardet-Biedl syndrome locus on chromosome 3 and evaluation of an efficient approach to homozygosity mapping. Hum Mol Genet 1994; 3: 1331–1335.

    Article  PubMed  CAS  Google Scholar 

  • Shutter J, Graham M, Kinsey A, et al. Hypothalamic expression of ART, a novel gene related to agouti, is up-regulated in obese and diabetic mutant mice. Genes Dev 1997; 11: 593–602.

    Article  PubMed  CAS  Google Scholar 

  • Strobel A, Issad T, Camoin L, et al. A leptin missense mutation associated with hypogonadism and morbid obesity. Nat Genet 1998; 18: 213–215.

    Article  PubMed  CAS  Google Scholar 

  • Takaya K, Ogawa Y, Hiraoka J, et al. Nonsense mutation of leptin receptor in the obese spontaneously hypertensive Koletsky rat. Nat Genet 1996; 14: 130–131.

    Article  PubMed  CAS  Google Scholar 

  • Tartaglia LA, Dembski M, Weng X, et al. Identification and expression cloning of a leptin receptor, OB-R. Cell 1995; 83 :1263–1271.

    Article  PubMed  CAS  Google Scholar 

  • Vaisse C, Clement K, Durand E, et al. Melanocortin-4 receptor mutations are a frequent and heterogeneous cause of morbid obesity. J Clin Invest. 2000; 106: 253–262.

    Article  PubMed  CAS  Google Scholar 

  • Vaisse C, Clement K, Guy-Grand B, Froguel P. A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nat Genet 1998; 20: 113–114.

    Article  PubMed  CAS  Google Scholar 

  • Williams C, Angelman H, Clayton-Smith J, et al. Angelman syndrome: consensus for diagnostic criteria.Angelman Syndrome Foundation. Am JMed Genet 1995; 56: 237–238.

    Article  CAS  Google Scholar 

  • Wu-Peng X, Chua Jr. S, Okada N, et al. Phenotype of the obese Koletsky (f) rat due to tyr763stop mutation in the extracellular domain of the leptin receptor (Lepr). Diabetes 1997; 46: 513–518.

    Article  PubMed  CAS  Google Scholar 

  • Yano H, Readhead C, Nakashima M, et al. Pituitary-directed leukemia inhibitory factor transgene causes Cushing’s syndrome: neuro-immune-endocrine modulation of pituitary development. Mol Endocrinol 1998; 12: 1708–1720.

    Article  PubMed  CAS  Google Scholar 

  • Yaswen L, Diehl N, Brennan M, Hochgeschwender U. Obesity in the mouse model of proopiomelanocortin deficiency responds to peripheral melanocortin. Nat Med 1999; 5: 1066–1070.

    Article  PubMed  CAS  Google Scholar 

  • Yeo GSH, Farooqi IS, Aminian S, et al. A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nat Genet 1998; 20: 111–112.

    Article  PubMed  CAS  Google Scholar 

  • Young T, Penney L, Woods M, et al. A fifth locus for Bardet-Biedl syndrome maps to chromosome 2q31. Am JHum Genet 1999; 64: 900–904.

    Article  PubMed  CAS  Google Scholar 

  • Yu S, Yu D, Lee E, et al. Variable and tissue-specific hormone resistance in heterotrimeric Gs protein alpha-subunit (Gs-alpha) knockout mice is due to tissue-specific imprinting of the Gs-alpha gene. Proc Natl Acad Sci 1998; 95: 8715–8720.

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Proenca R, Maffel M, et al. Positional cloning of the mouse obese gene and its human homologue. Nature 1994; 372: 425–432.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bray, M.S., Allison, D.B. (2001). Obesity Syndromes. In: Owen, J.B., Treasure, J.L., Collier, D.A. (eds) Animal Models — Disorders of Eating Behaviour and Body Composition. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9662-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9662-6_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5743-3

  • Online ISBN: 978-94-015-9662-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics