Skip to main content

Physiology of Cambial Growth, Storage of Reserves and Heartwood Formation

  • Chapter
Trends in European Forest Tree Physiology Research

Part of the book series: Tree Physiology ((TREE,volume 2))

  • 159 Accesses

Abstract

Wood constitutes a renewable bio-product of huge ecological and economical value. Within axes of trees, wood formation starts during cambial growth and inwards produced cells which differentiate and mature during the first growing season forming functional units. In a standing tree, living, mature wood parts serve three functions: water and mineral transport, storage of food reserves and mechanical stability. Wood is thus composed of different cell types which enable the different functional purposes and which show a highly ordered arrangement. The dominant reserve substances starch, triacylglycerids, and storage proteins, are accumulated in living parenchyma cells during favorable periods and consumed at times of demand. However, they behave differently with respect to the deposition period and the pool sizes within the cells, but show similar behavior with respect to mobilization in spring. In most tree species, the final step in the life cycle of living xylem cells, is a genetically determined, programmed cell death which is characterized by the activation of hydrolytic enzymes, gene expression and de novo protein synthesis. The activation of metabolic pathways leads to the formation of phenolic heartwood extractives, which are responsible for the biological, chemical and physical features of heartwood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aloni R (1987) Differentiation of vascular tissues. Ann Rev Plant Physiol 38: 179–204.

    Article  Google Scholar 

  • Anonymous (1957) International glossary of terms used in wood anatomy: Prepared by the Int. Assoc. of Wood Anatomists. Trop Woods 107: 1–36.

    Google Scholar 

  • Büsgen M, Munch E (1929) The structure and life of forest trees, 3`d revised edn by E Munch (ed), Chapman Hall London

    Google Scholar 

  • Burtin P, Jay-Allemand C, Charpentier JP, Janin G (1998) Natural wood colouring process in Juglans sp. (J. nigra, J. regia and hybrid J. nigra 23 x J. regia) depends on native phenolic compounds accumulated in the transition zone between sapwood and heartwood. Trees 12: 258–264.

    Google Scholar 

  • Delius V, Mila I, ScalbertA, Menard C, Michon V, Herve du Penhoat C (1997) Douglas-fir polyphenols and heartwood formation. Phytochem 45: 1573–1578.

    Article  Google Scholar 

  • De Filippis L, Magel E (1998) Differences in genomic DNA extracted from bark and from wood of different zones in Robinia trees using RAPD-PCR. Trees 12: 377–384.

    Google Scholar 

  • FischerA (1891) Beiträge zur Physiologie der Holzgewächse. Jahrb Wiss Bot 22: 73–160.

    Google Scholar 

  • Guy CL, Huber JL, Huber SC (1992) Sucrose-phosphate synthase and sucrose accumulation at low temperature. Plant Physio1100: 502–508.

    Google Scholar 

  • Hauch S, Magel EA (1998) Extractable activities and protein content of sucrose phosphate synthase, sucrose synthase and neutral invertase in trunk tissues of Robinia pseudoacacia L. are related to cambial wood production and heartwood formation. Planta 207: 266–274.

    Article  CAS  Google Scholar 

  • Hergert HL (1977) Secondary lignification in conifer trees. Amer Soc Symp Series, Vol. 48, “Cellulose Chemistry and Technology”: 227–243.

    Google Scholar 

  • Higuchi T (1998) Biochemistry and molecular biology of wood. In: Springer Series in Wood Science, TE Timell (ed). Springer, Berlin, München.

    Google Scholar 

  • Hillis WE (1987) Heartwood and tree exudates. Springer, Berlin, München.

    Google Scholar 

  • Höll W (1994) Zur Physiologie verholzter Achsen. Naturwissenschaften 81: 250–259.

    Article  Google Scholar 

  • Höll W (1997) Storage and mobilization of carbohydrates and lipids. In: Trees–Contribution to modern tree physiology, Rennenberg H, Eschrich W, Ziegler H (eds), SFB Academic Publ., The Hague, 197–211.

    Google Scholar 

  • Höll W (2000) Distribution, fluctuation and metabolism of food reserves in the wood of trees. In: Cell and molecular biology of wood formation, Savidge R, Barnett J, Napier R (eds), BIOS, Oxford, 347–362.

    Google Scholar 

  • Little CHA, Savidge RA (1987) The role of plant growth regulators in forest trees cambial growth. Plant Growth Reg 6: 137–169.

    Article  CAS  Google Scholar 

  • Magel E (2000) Biochemistry and physiology of heartwood formation. In: Cell and molecular biology of wood formation, Savidge R, Barnett J, Napier R (eds), BIOS, Oxford, 363–376.

    Google Scholar 

  • Magel E.A., Bleuel H., Hampp R. (1995a) Verteilung von Stärke und löslichen Kohlenhydraten in Stämmen unterschiedlich geschädigter Fichten (Picea abies L. Karst.) am Standort Schöllkopf. In: Waldschäden im Schwarzwald, Bittlingmaier L, Reinhardt W, Siefermann-Harms D (eds), Ecomed, Landsberg, 194–203.

    Google Scholar 

  • Magel EA, Monties B, Drouet A, Jay-Allemand A, Ziegler H (1995b) Heartwood formation: biosynthesis of heartwood extractives and “secondary” lignification. In: EUROSILVA–Contribution to forest tree physiology. Sandermann H, Bonnet-Masimbert M (eds.), INRA edition, Paris, 35–56.

    Google Scholar 

  • Magel EA, Bleuel H, Hampp R, Ziegler H (1996) Pyridine nucleotide levels and activities of dehydrogenases in cambial derivatives of Robinia pseudoacacia L. Trees 10: 325–330.

    Google Scholar 

  • Magel E, Einig W, Hampp R (2000) Carbohydrates in Trees. In: Carbohydrate reserve in plants–Synthesis and regulation, Gupta AK, Kaur N (eds), Elsevier Amsterdam, 317–336.

    Google Scholar 

  • Magel EA, Hillinger C, Höll W, Ziegler H (1997) Biochemistry and physiology of heartwood formation: Role of reserve substances. In: Trees - Contribution to modern tree physiology

    Google Scholar 

  • Rennenberg H, Eschrich W, Ziegler H (eds), SFB Academic Publ., The Hague, 477–506.

    Google Scholar 

  • Popp M, Lied W, Bierbaum U, Gross M, Große-Schulte T, Hams S, Oldenettel J, Schüler S, Wiese J (1997) Cyclitols — stable osmotica in trees. In: Trees - Contribution to modern tree physiology

    Google Scholar 

  • Rennenberg H, Eschrich W, Ziegler H (eds), SFB Academic Publisher, The Hague, 257–270.

    Google Scholar 

  • Roberts LW, Gahan PB, Aloni R (1988) Vascular differentiation and plant growth regulators. Springer, Berlin Heidelberg New York, 154 pp.

    Google Scholar 

  • Saranpää P, Höll W (1989) Soluble carbohydrates of Pinus sylvestris L. sapwood and heartwood. Trees 3: 138–143.

    Article  Google Scholar 

  • Sauter JJ, Witt W (1997) Structure and function of rays: storage, mobilization, transport. In: Trees–Contribution to modern tree physiology, Rennenberg H, Eschrich W, Ziegler H (eds), SFB Academic Publisher, The Hague, 177–195.

    Google Scholar 

  • Savidge RA, Barnett JR (1993) Protoplasmic changes in cambial cells induced by a tracheiddifferentiation factor from pine needles. J Exp Bot 44: 395–405.

    Article  CAS  Google Scholar 

  • Sinnott EW (1918) Factors determining character and distribution of food reserves in woody plants. Bot Gaz 66: 162–175.

    Article  Google Scholar 

  • Sung SS, Kormanik PP, Black CC (1993) Vascular cambial sucrose metabolism and growth in loblolly

    Google Scholar 

  • pine (Pinus taeda L.) in relation to transplanting stress. Tree Physio112: 243–258.

    Google Scholar 

  • Tanaka T, Jiang ZH, Kouno I (1998) Distribution of ellagic acid derivatives and a diarylheptanoid in wood of Platycarya strobilacea. Phytochem 47: 851–854.

    Article  CAS  Google Scholar 

  • Tromp J, Ovaa IC (1973) Spring mobilization of protein nitrogen in apple bark. Physiol Plant 29: 1–5.

    Article  CAS  Google Scholar 

  • Tuominen H, Puech L, Fink S, Sundberg B (1997) A radial concentration gradient of indoleacetic acid is related to secondary xylem development in Populus. Plant Physiol 115: 577–585.

    CAS  Google Scholar 

  • Uggla C, Moritz T, Sandberg G, Sundberg B (1996) Auxin as a positional signal in pattern formation in plants. Proc Natl Acad Sci USA 93: 9282–9286.

    Article  PubMed  CAS  Google Scholar 

  • Waisel Y, Noah I, Fahn A (1966) Cambial activity in Eucalyptus camaldulensis Dehn II. The production of phloem and xylem elements. New Phytol. 65: 319–324.

    Article  Google Scholar 

  • Ziegler H (1975) Phloem transport. Nature of transported substances. In: Encyclopedia of Plant Physiol, new series Vol 1, Transport in plants I, Zimmermann MH, Milburn JA (eds), Springer, Berlin, 59–100.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Elisabeth, M. (2001). Physiology of Cambial Growth, Storage of Reserves and Heartwood Formation. In: Huttunen, S., Heikkilä, H., Bucher, J., Sundberg, B., Jarvis, P., Matyssek, R. (eds) Trends in European Forest Tree Physiology Research. Tree Physiology, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9803-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9803-3_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5829-4

  • Online ISBN: 978-94-015-9803-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics