Skip to main content

The Thick Filament of Vertebrate Striated Muscle

The Structure at Rest and at Work

  • Chapter
Molecular Control Mechanisms in Striated Muscle Contraction

Part of the book series: Advances in Muscle Research ((ADMR,volume 1))

  • 114 Accesses

Abstract

Contraction in mammalian skeletal muscle and cardiac muscle occurs through a sliding filament mechanism involving two sets of interdigitating filaments: the myosin containing thick filaments and the actin-containing thin filaments (Huxley and Hanson, 1954; Huxley and Niedergerke, 1954; Davies, 1963; Squire, 1981). Interaction between these filaments to produce force or shortening involves a cyclic binding of the myosin heads on the thick filament to the actin of the thin filament in the presence of calcium and ATP (Huxley, 1969; Huxley and Simmons, 1971; Brenner, 1987; Schoenberg, 1988). Both the biochemistry and mechanics of this mechanism have been extensively studied (Taylor, 1979; Cooke, 1986; Hibberd and Trentham, 1986; Goldman and Brenner, 1987; Schoenberg, 1988; Ford et al., 1977; Brenner, 1987; Brenner, 1990) in skeletal muscle, and understanding of the interaction between myosin and actin has been facilitated by recent x-ray crystallographic determinations of the structure of the S-1 subunit portion of the chicken skeletal muscle myosin head (Rayment et al., 1993) and of actin (Holmes et al., 1990a; Holmes et al., 1990b).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adhikari, B., K. Hideg and P. Fajer. (1997) Independent mobility of catalytic and regulatory domains of Myosin heads. Proc. Natl. Acad. Sci. USA. 94:9643–9647.

    PubMed  CAS  Google Scholar 

  • Alyonycheva, T., L. Cohen-Gould, C. Siewert, D. A. Fischman, and T. Mikawa. (1997) Skeletal musclespecific myosin binding protein-H is expressed in Purkinje fibers of the cardiac conduction system. Circ. Res. 80:665–672.

    PubMed  CAS  Google Scholar 

  • Anderson, P., N. Malouf, A. Oakeley, E. Pagani and P. Allen. (1991) Troponin T isoform expression in the normal and failing human left ventricle: a comparison among normal and failing adult hearts, fetal hears and adult and fetal skeletal muscle. Circ Res. 60:1226–1233

    Google Scholar 

  • Bagni, M. A., G. Cecchi, F. Colomo, and P. Garzella. (1992) Are weakly binding bridges present in resting intact muscle fibers? Biophys. J. 63:1412–1415.

    PubMed  CAS  Google Scholar 

  • Baker, J., I. Brust-Mascher, S. Ramachandran, L. LaConte and D. Thomas. (1998) A large and distinct rotation of the myosin light chain domain occurs upon muscle contraction. Proc. Natl. Acad. Sci. USA. 95:2944–2949.

    PubMed  CAS  Google Scholar 

  • Barany, K. and M. Barany. (1979) Phosphorylation-dephosphorylation of the 18,000 dalton light chain of myosin during the contraction-relaxation cycle of frog muscle. J. Biol. Chem. 254:3617–3623.

    PubMed  CAS  Google Scholar 

  • Bennett, P., R. Craig, R. Starr, and G. Offer. (l985b) The ultrastructural location of C-protein, X-protein and H-protein in rabbit muscle. J. Muscle Res. Cell Motil. 7:550–567.

    Google Scholar 

  • Bennett, P., R. Starr, A. Elliot, and G. Offer. (1985a) The structure of C-protein and X-protein molecules and a polymer of X-protein. J. Mol. Biol. 184:297–309.

    PubMed  CAS  Google Scholar 

  • Bonne, G., L. Carrier, P. Richard, B. Hainque and K. Schwartz. (1998) Familal hypertrophic cardiomyopathy: from mutations to functional defects. Circ. Res. 83:579–593.

    Google Scholar 

  • Brenner, B. (1987) Mechanical and structural approaches to correlation of crossbridge action with actomyosin ATPase in solution. Annu. Rev. Physiol. 48:655–672.

    Google Scholar 

  • Brenner, B. (1990) Muscle mechanics and biochemical kinetics. In Molecular Mechanisms in Muscular Contraction. J.M. Squire, editor. Macmillan, New York. 77–149.

    Google Scholar 

  • Brenner, B., M. Schoenberg, J. Chalovich, L. Greene and E. Eisenberg. (1982) Evidence for cross-bridge attachment in relaxed muscle at low ionic strength. Proc. Natl. Acad. Sci. USA. 79:7288–7291.

    PubMed  CAS  Google Scholar 

  • Brenner, B., L. Yu and R. Podolsky. (1984) X-ray diffraction evidence for cross-bridge formation in relaxed muscle fibers at various ionic strengths. Biophys. J 46:299–306.

    PubMed  CAS  Google Scholar 

  • Cantino, M. and J. M. Squire. (1986) Resting myosin cross-bridge configuration in frog muscle thick filaments. J. Cell Biol. 102:610–618.

    PubMed  CAS  Google Scholar 

  • Chavanieu, A., N. Keane, P. Quirk, B. Levine, B. Calas, L. Wei and L. Ellis. (1994) Phosphorylation effects on flanking charge residues: Structural implications for signal transduction in protein kinases. Eur. J. Biochem. 224:115–123.

    PubMed  CAS  Google Scholar 

  • Chew, M. W. K. and J. M. Squire. (1995) Packing of a-helical coiled-coil myosin rods in vertebrate muscle thick filaments. J. Struct. Biol. 115:233–249.

    PubMed  CAS  Google Scholar 

  • Cooke, R. (1986) The mechanism of muscle contraction. CRC Crit. Rev. Biochem. 21:53–118.

    PubMed  CAS  Google Scholar 

  • Craig, R., L. Alamo, and R. Padron. (1992) Structure of the myosin filaments of relaxed and rigor vertebrate striated muscle studied by rapid freezing electron microscopy. J. Mol. Biol. 228:474–487.

    PubMed  CAS  Google Scholar 

  • Craig, R. and G. Offer. (1976) The location of C-protein in rabbit skeletal muscle. Proc. R Soc Lond B Biol Sci 192:451–461.

    PubMed  CAS  Google Scholar 

  • Craig, R., R. Padron and J. Kendrick-Jones. (1987) Structural changes accompanying phosphorylation of tarantula muscle myosin filaments. J. Cell Biol. 105:1319–1327.

    PubMed  CAS  Google Scholar 

  • Craig, R., R. Smith and J. Kendrick-Jones. (1983) Light-chain phosphorylation controls the conformation of vertebrate non-muscle and smooth muscle myosin molecules. Nature (Lond.) 302:436–439.

    CAS  Google Scholar 

  • Crowther, R. A., R. Padron, and R. Craig. (1985) Arrangement of the heads of myosin in relaxed thick filaments from tarantula muscle. J. Mol. Biol. 184:429–439.

    PubMed  CAS  Google Scholar 

  • Dantzig, J., M. Leonard, L. Fananapazir, N. Epstein, Y. Goldman, R. Levine and H.L. Sweeney. (1996) A-band length, slack length and tension in skinned soleus fibers from patients with hypertrophic cardiomyopathy caused by a mutation in the b-myosin heavy chain. Biophys. J. 70:A290.

    Google Scholar 

  • Davies, R. E. (1963) A molecular theory of muscle contraction: calcium dependent contractions with hydrogen bond formation plus ATP-dependent extensions of part of the myosin-actin crossbridges. Nature (Lond.) 199:1068–1074.

    CAS  Google Scholar 

  • Davis, J. S. (1988) Interaction of C-protein with pH 8.0 synthetic thick filaments prepared from the myosin of vertebrate skeletal muscle. J. Muscle Res. Cell Motil. 9:174–183.

    PubMed  CAS  Google Scholar 

  • Diffee, G., M. Greaser, F. Reinach and R. Moss. (1995) Effects of a non-divalent cation binding mutant of myosin regulatory light chain on tension generation in skinned skeletal muscle fibers. Biophys. J. 68:1443–1452.

    PubMed  CAS  Google Scholar 

  • Diffee, G., J. Patel., F. Reinach, M. Greaser and R. Moss. (1996) Altered kinetics of contraction in skleltal muscle fibers containing a mutant myosin regulatory light chain with reduced divalent cation binding. Biophys. J. 71: 341–350.

    PubMed  CAS  Google Scholar 

  • Dominguez, R., Y. Freyzon, K. M. Trybus, and C. Cohen. (1998) Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the prepower stroke state. Cell 94:559–571.

    PubMed  CAS  Google Scholar 

  • Einheber, S. and D. Fischman. (1990) Isolation and characterization of a cDNA clone encoding avian skeletal C-protein: an intracellular member of the immunoglobulin superfamily. Proc. Natl. Acad. Sci. 87:2157–2161.

    PubMed  CAS  Google Scholar 

  • Epstein, N. (1998) The molecular biology and pathophysiology of hypertrophic cardiomyopathy due to mutations in the beta myosin heavy chains and the essential and regulatory light chains. Adv. Exp. Med. and Biol. 453:105–115.

    CAS  Google Scholar 

  • Fananapazir, L., M. C. Dalakas, F. Cyran, G. Cohn, and N. D. Epstein. (1993) Missense mutations in the b-myosin heavy-chain gene cause central core disease in hypertrophic cardiomyopathy. Proc. Natl. Acad. Sci. 90:3993–3997.

    PubMed  CAS  Google Scholar 

  • Fisher, A., C. Smith, J. Thoden, R. Smith, K. Sutoh, H. Holden and I. Rayment. (1995) Structural studies of myosin:nucleotide complexes: a revised model for the molecular basis of muscle contraction. Biophys. J. 68:19S–26S.

    PubMed  CAS  Google Scholar 

  • Flavigny, J., M. Souchet, P. Sibillon, I. Berregi-Bertrand, B. Hainque, A. Mallet, A. Bril, K. Schwartz and L. Carrier. (1999) COOH-terminal truncated cardiac myosin-binding protein C mutants resulting from familial hypertrophic cardiomyopathy mutations exhibit altered expression and/or incorporation in fetal rat cardiomyocytes. J. Mol. Biol. 294:443–456.

    PubMed  CAS  Google Scholar 

  • Ford, L. E., A. F. Huxley, and R. M. Simmons. (1977) Tension responses to sudden length change in stimulated frog muscle fibres near slack length. J. Physiol. 269:441–515.

    PubMed  CAS  Google Scholar 

  • Freiburg, A. and M. Gautel. (1996) A molecular map of the interactions of titin and myosin-binding protein C: implications for sarcomeric assembly in familian hypertrophic cardiomyopathy. Eur. J. Biochem. 235: 317–323.

    PubMed  CAS  Google Scholar 

  • Fuchs, F. and Y. P. Wang. (1997) Length-dependence of actin-myosin interaction in skinned cardiac muscle fibers in rigor. J. Mol. Cell. Cardiol. 29:3267–3274.

    PubMed  CAS  Google Scholar 

  • Furst, D. O., U. Vinkemeyer, and K. Weber. (1992) Mammalian skeletal muscle C-protein: purification from bovine muscle, binding to titin and the characterization of a full length cDNA. J. Cell Sci. 102:769–778.

    PubMed  Google Scholar 

  • Garvey, L., E. Kranias and J. Solaro. (1988) Phosphorylation of C protein, troponin I and phospholamban in isolated rabbit hearts. Biochem. J. 249:709–14.

    PubMed  CAS  Google Scholar 

  • Gautel, M., O. Zuffardi, A. Freiberg and S. Labeit. (1995) Phosphorylation switches specific for the cardiac isoforms of myosin binding protein C: a modulator of cardiac contraction? EMBO J. 14:1952–1960.

    PubMed  CAS  Google Scholar 

  • Geisterfer-Lowrance, A., M. Christe, D. Conner, J. Ingwall, F. Schoen, C. Seidman and J. Seidman. (1996) A mouse model of familial hypertrophic cardiomyopathy. Science. 272:731–734.

    PubMed  CAS  Google Scholar 

  • Gilbert, R, M. Kelly, T. Mikawa and D. Fischman. (1996) The carboxyl terminus of myosin binding protein-C (MyBP-C, C-protein) specifies incorporation into the A-band of striated muscle. J. Cell Sci. 109: 101–111.

    PubMed  CAS  Google Scholar 

  • Goldman, Y. E. and B. Brenner. (1987) Special topic: molecular mechanisms of muscle contraction. Annu. Rev. Physiol. 49:629–635.

    PubMed  CAS  Google Scholar 

  • Gruen, M. and M. Gautel. (1999) Mutations in b-myosin S2 that cause familial hypertrophic cardiomyopathy (FHC) abolish the interaction with the regulatory domain of myosin-binding protein-C. J. Mol. Biol. 286:933–949.

    PubMed  CAS  Google Scholar 

  • Harford, J. and J. M. Squire. (1986) “Crystalline” myosin crossbridge array in relaxed bony fish muscle. Low angle X-ray diffraction from plaice fin muscle and its interpretation. Biophys. J. 50: 145–155.

    PubMed  CAS  Google Scholar 

  • Harford, J. J. and J. M. Squire. (1992) Evidence for structurally different attached states of myosin crossbridges on actin during contraction of fish muscle. Biophys. J. 63:387–396.

    PubMed  CAS  Google Scholar 

  • Hartzell, H.C. and D. Glass. (1984) Phosphorylation of purified cardiac muscle protein by purified cAMP-dependent and endogenous Ca-calmodulin-dependent protein kinases. J. Biol. Chem. 259:15587–15596.

    PubMed  CAS  Google Scholar 

  • Hartzell, H.C. and L. Titus. 1982. Effects of cholinergic and adrenergic agonists on phosphorylation of a 165,000-dalton myofibrillar protein in intact cardiac muscle. J. Biol. Chem. 257: 2111–2120.

    PubMed  CAS  Google Scholar 

  • Haselgrove, J. C. (1975) X-ray evidence for confomational changes in the myosin filaments of vertebrate striated muscle. J. Mol. Biol. 92: 113–143.

    PubMed  CAS  Google Scholar 

  • Haselgrove, J. C. (1980) A model of myosin crossbridge structure consistent with the low-angle X-ray diffraction pattern of vertebrate muscle. J. Muscle Res. Cell Motil. 1:177–191.

    PubMed  CAS  Google Scholar 

  • Ilaselgrove, J. C. and C. D. Rodger. (1980) The interpretation of X-ray diffraction patterns from vertebrate striated muscle. J. Muscle Res. Cell Motil. 1:371–390.

    Google Scholar 

  • Hibberd, M. G. and D. R. Trentham. (1986) Relationships between chemical and mechanical events during muscle contraction. Annu. Rev. Biophys. Biophys. Chem. 15:1 19–161.

    Google Scholar 

  • Hofmann, P.A. and J.H. Lange, III. (1994) Effects of phosphorylation of troponin I and C protein on isometric tension and velocity of unloaded shortening in skinned single ventricular myocytes from rats. Circ. Res. 74:718–726.

    PubMed  CAS  Google Scholar 

  • Hofmann, P., J. Metzger, M. Greaser and R. Moss. (1990) Effects of partial extraction of light chain 2 on the Ca2+ sensitivities of isometric tension, stiffness and the velocity of shortening in skinned skeletal muscle fibers. J. Gen. Physiol. 95:477–498.

    PubMed  CAS  Google Scholar 

  • Hohmes, K. C., D. Popp, W. Gebhard, and W. Kabasch. (1990a) Atomic model of the actin filament. Nature 347:44–49.

    Google Scholar 

  • Holmes, K. C., D. Popp, W. Gebhard, and W. Kabasch. (1990b) The structure of F-actin calculated from X-ray diffraction diagrams and the 0.6 nm crystal structure. In Molecular Mechanisms in Muscular Contraction. J.M. Squire, editor. CRC Press, Inc., Boca Raton. 65–75.

    Google Scholar 

  • Houdusse, A., V. N. Kalabokis, D. Himmel, A. G. Szent-Gyorgyi, and C. Cohen. (1999) Atomic structure of scallop myosin subfragment S 1 complexed with MgADP: a novel conformation of the myosin head. Cell 97:459–470.

    PubMed  CAS  Google Scholar 

  • Huxley, A. F. and R. Niedergerke. (1954) Structural changes in muscle during contraction. Interference microscopy of living muscle fibers. Nature 173:971–972.

    PubMed  CAS  Google Scholar 

  • Huxley, A. F. and R. M. Simmons. (1971) Proposed mechanism of force generation in striated muscle. Nature (Lonad.) 233:533–538.

    CAS  Google Scholar 

  • Huxley, H. E. (1963) Electron microscope studies of the structure of natural and synthetic protein filaments from muscle. J. Mol. Biol. 7:281–308.

    PubMed  CAS  Google Scholar 

  • Huxley, H. E. (1969) The mechanism of muscle contraction. Science 164:1356–1366.

    PubMed  CAS  Google Scholar 

  • Huxley, H. E. and W. Brown. (1967) The low angle X-ray diagram of vertebrate striated muscle and its behaviour during contraction and vigor. J. Mol. Biol. 30:383–434.

    PubMed  CAS  Google Scholar 

  • Huxley, H. E. and J. Hanson. (1954) Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature (Land.) 173:973–976.

    CAS  Google Scholar 

  • Huxley, H. E., A. Stewart, H. Sosa, and T. Irving. (1994) X-ray diffraction measurements of the extensibility of actin and myosin filaments in contracting muscle. Biophys. J. 67:241 1–2421.

    Google Scholar 

  • Ip, W. and J. Heuser. (1983) Direct visualization of the myosin crossbridge helices on relaxedrabbit psoas thick filaments. J. Mol. Biol. 171:105–109.

    PubMed  CAS  Google Scholar 

  • Ito, M. and D. Hartshorne. (1990) Phosphorylation of myosin as a regulatory mechnanism in smooth muscle. Prog. Clin Biol. Res. 327:57–72.

    PubMed  CAS  Google Scholar 

  • Jeacocke, S. and P. England. (1980) Phosphorylation of a myofibrillar protein of Mr 150,000 in perfused rat heart, and the tentative identification of this as C-protein. FEBS Letters 122:129–132.

    PubMed  CAS  Google Scholar 

  • Kensler, R.W. (1997). Isolation and analysis of rabbit cardiac muscle thick filaments. Puerto Rico Health Science Journal 16:226.

    Google Scholar 

  • Kensler, R. W. (1998) Analysis of Rabbit Cardiac Muscle Thick Filaments. Biophysics J. 74:A363.

    Google Scholar 

  • Kensler, R. W. (2001) Mammalian cardiac muscle thick filaments: Their periodicity and interactions with actin. Submitted to Biophys. J.

    Google Scholar 

  • Kensler, R., S. Peterson and M. Norberg. (1994) The effects of changes in temperature or ionic strength on isolated rabbit and fish skeletal muscle thick filaments. J. Mus. Res. Cell Motil. 15:69–79.

    CAS  Google Scholar 

  • Kensler, R. W. and M. Stewart. (1983) Frog skeletal muscle thick filaments are three-stranded. J. Cell Biol. 96:1797–1802.

    PubMed  CAS  Google Scholar 

  • Kensler, R. W. and M. Stewart. (1986) An ultrastructural study of crossbridge arrangement in the frog thigh muscle thick filament. Biophys. J. 49:343–351.

    PubMed  CAS  Google Scholar 

  • Kensler, R. W. and M. Stewart. (1989) An ultrastructural study of crossbridge arrangement in the fish skeletal muscle thick filament. J. Cell Sci. 94:391–401.

    PubMed  Google Scholar 

  • Kensler, R. W. and M. Stewart. (1993) The relaxed crossbridge pattern in isolated rabbit psoas muscle thick filaments. J. Cell Sci. 105:841–848.

    PubMed  Google Scholar 

  • Kensler, R. and J. Woodhead. (1995) The chicken thick filament: Temperature and the relaxed crossbridge arrangement. J. Mus. Res. Cell Motil. 16:90

    Google Scholar 

  • Kerrick, W. and L. Bolles. (1981) Regulation of Ca2+-activated tension in Limulus striated muscle. Pflug. Arch. 392:121–124.

    CAS  Google Scholar 

  • Koretz, J. (1979) Effects of C-protein on synthetic myosin filament structure. Biophys. J. 27:433–446.

    PubMed  CAS  Google Scholar 

  • Kulikovskaya, I., G. McClellan, M. Gautel and S. Winegrad. (2001) Interaction of N-terminus of cardiac binding protein C with myosin and the effect on contractility. Biophys. J. 80: 261 A.

    Google Scholar 

  • Kulikovskaya, I., G. McClellan, and S. Winegrad. (2000) Effect of extracellular Ca on the phosphorylation of myosin-binding protein (MyBP-C) in cardiac muscle. Biophys. J 78: 118A (abstr.)

    Google Scholar 

  • Kunst, G., K. Kress, M. Gruen, D. Uttenweiler, M. Gautel and R. Fink. (2000) MyBP-C (C-Protein)- a phosphorylation dependent force regulator in muscle that controls the attachment of myosin heads by interaction with myosin — S2. Circ. Res. 86:51–58.

    PubMed  CAS  Google Scholar 

  • Labeit, S. and B. Kolmer. (1995) Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science 270:293–296.

    PubMed  CAS  Google Scholar 

  • Labeit, S., M. Gautel, A. Iakey, and J. Trinick. (1992) Towards a molecular understanding of titin. EMBO J. 11: 1711–1716.

    PubMed  CAS  Google Scholar 

  • Lehman, W., A.G. Szent-Gyorgyi and J. Kendrick-Jones., Lehman, W., A.G. Szent-Gyorgyi and J. Kendrick-Jones. (1973) Myosin-linked regulatory systems. Cold Spring Harbor Symp. Quant. Biol. 37:310–30.

    Google Scholar 

  • Levine, R. J. C. (1993) Evidence for overlapping myosin heads on relaxed thick filaments of fish, frog, and scallop striated muscle. J. Struct. Biol. 110:99–110.

    PubMed  CAS  Google Scholar 

  • Levine, R. J. C. (1997) Differences in myosin head arrangement on relaxed thick filaments from Lethocerus and rabbit muscles. J. Muscle Res. Cell Motil. 18:529–543.

    PubMed  CAS  Google Scholar 

  • Levine, R., J. Caulfield, P. Norton, P. Chantler, M. Deziel, H. Slayter and S. Margossian. (1999) Myofibrillar protein structure and assembly during idiopathic dilated cardiomyopathy. Molec. Cell. Biochem. 195:1–10.

    PubMed  CAS  Google Scholar 

  • Levine, R., P. Chantler, R. Kensler and J. Woodhead. (1991) Effects of phosphorylation by myosin light chain kinase on the structure of Limulus thick filaments. J. Cell Biol. 113:563–572.

    PubMed  CAS  Google Scholar 

  • Levine, R., R. Kensler and P. Levitt. (1986) Crossbridge and backbone structure of invertebrate thick filaments. Biophys. J. 49:135–8.

    PubMed  CAS  Google Scholar 

  • Levine, R. J. C., R. W. Kensler, H. L. Sweeney, and Z. Yang. (1992) Phosphorylation of myosin light chain produces changes in thick filaments from rabbit skeletal muscle. Molecular Biology ofthe Cell 3:363a (abstract).

    Google Scholar 

  • Levine, R., R. Kensler, Z. Yang, J. Stull and H.L. Sweeney. (1996) Myosin regulatory light chain phosphorylation affects the structure of rabbit thick filaments. Biophys. J. 71:898–907.

    PubMed  CAS  Google Scholar 

  • Levine, R., R. Kensler, Z. Yang, and H. L. Sweeney. (1995) Myosin regulatory light chain phosphorylation and the production of functionally significant changes in myosin head arrangement on striated muscle thick filaments. Biophys. J 68:224S.

    PubMed  CAS  Google Scholar 

  • Levine, R., I. Kulikovskaya, G. McClellan, M. Gautel and S. Winegrad. (2001) Cardiac MyBP-C: removal or addition of defined fragments affects thick filament structure. Biophys. J. 80: 261 A.

    Google Scholar 

  • Levine, R., A. Weisberg, B. Millman, I. Kulikovskaya, G. McClellan and S. Winegrad. (2001) Multiple structures of thick filaments in resting cardiac muscle and their influence on cross bridge interactions. Biophys. J. 81:1070–1082.

    PubMed  CAS  Google Scholar 

  • Levine, R., Z Yang, N. Epstein, L. Fananapazir, J. Stull and H. L. Sweeney. (1998) Structural and functional reflections of alterations in the myosin regulatory light chains of mammalian skeletal muscle. J. Struct. Biol. 121:149–161.

    Google Scholar 

  • Lowy, J., D. Popp and A. Stewart. (1991) X-ray studies of order-disorder transitions in the myosin heads of skinned rabbit psoas muscles. Biophys. J. 60:812–824.

    PubMed  CAS  Google Scholar 

  • Luther, P. K., P. M. G. Munro, and J. M. Squire. (1981) Three-dimensional structure of the vertebrate Muscle A-band. III. M-region structure and myosin filament symmetry. J. Mol. Biol. 151:703–730.

    PubMed  CAS  Google Scholar 

  • Malinchik, S., S. Xu and L. Yu. (1997) Temperature-induced structural changes in the myosin thick filament of skinned rabbit psoas muscle. Biophys. J. 73:2304–2312.

    PubMed  CAS  Google Scholar 

  • Manning, D. and J. Stull. (1982) Myosin light chain phosphorylation-dephosphorylation in mammalian skeletal muscle. Am. J. Physiol. 242:C234–241.

    PubMed  CAS  Google Scholar 

  • Margossian, S., H. White, J. Caulfield, P. Norton, S. Taylor and H. Slayter. (1992) Light chain 2 profile and activity of human ventricular myosin during dilated cardiomyopathy. Circulation 85:1720–1733.

    PubMed  CAS  Google Scholar 

  • Margossian, S., P. Anderson, P. Chantler, H. Patel, M. Deziel, W. Stafford, P. Norton, A. Malhotra, F. Yang, J. Caulfield and H. Slayter. (1998) Calcium regulation in the human myocardium during dilated cardiomyopathy: a structural basis for impaired Ca2+-sensitivity. Molec. Cell. Biochem. 194:301–313.

    Google Scholar 

  • Margossian, S., T. Huiatt and H. Slayter. (1987) Control of filament length by the regulatory light chains in skeletal and cardiac myosins. J. Biol. Chem. 262:5791–5796.

    PubMed  CAS  Google Scholar 

  • Maruyama, K. (1986) Connectin, an elastic filamentous protein of striated muscle. Int. rev. Cytol. 104:81–114.

    PubMed  CAS  Google Scholar 

  • Matsubara, I. and B. Millman. (1974) X-ray diffraction patterns from mammalian heart muscle. J. Mol. Biol. 82:527–536.

    PubMed  CAS  Google Scholar 

  • McClellan, G., I. Kulikovskaya and S. Winegrad. (2001) Cardiac myosin: use it or lose it or get help from cMyBP-C. Biophys. J. 80: 261 A.

    Google Scholar 

  • McClellan, G., I. Kulikovskaya I and S. Winegrad. (2001) Changes in cardiac contractilitiy related to calcium-mediated changes in phosphorylation of myosin binding protein C (MyBP-C). Biophys J. 81:1082–1093.

    Google Scholar 

  • McClellan, G., A. Weisberg and S. Winegrad. (1994) Cyclic AMP can raise or lower cardiac actomyosin ATPase activity depending on alpha adrenergic activity. Am. J. Physiol. 267:H431–H442.

    PubMed  CAS  Google Scholar 

  • McLachlan, A. D. and J. Karn. (1982) Periodic charge distributions in the myosin rod amino acid sequence match cross-bridge spacings in muscle. Nature 299:226–230.

    PubMed  CAS  Google Scholar 

  • Metzger, J., M. Greaser and R. Moss. (1989) Variations in cross-bridge attachment rate and tension with phosphorylation of myosin in mammalian skinned skeletal muscle fibers. J. Gen. Physiol. 93:855–883.

    PubMed  CAS  Google Scholar 

  • Metzger, J. and R. Moss. (1992) Myosin light chain 2 modulates calcium-sensitive cross-bridge transitions in vertebrate skeletal muscle. Biophys. J. 63:460–468.

    PubMed  CAS  Google Scholar 

  • Millman, B. (1979) X-ray diffraction from chicken skeletal muscle. In Proceedings of the First John M. Marshall Symposium in Cell Biology. F.A. Pepe, J.M. Sanger, and V. Nachmias, editors. Academic Press, New York. 351–4.

    Google Scholar 

  • Millman, B. M. (1998) The filament lattice of striated muscle. Physiological reviews 78:359–391.

    PubMed  CAS  Google Scholar 

  • Moody, M. F. (1967) Structure of the sheath of bacteriophage T4. I. Structure of the contracted sheath and polysheath. J. Mol. Biol. 25:167–200.

    PubMed  CAS  Google Scholar 

  • Moos, C., G. Offer, R. Starr and P. Bennett. (1975) Interaction of C-protein with myosin, myosin rod and light meromyosin. J. Mol Biol. 97:1–9.

    PubMed  CAS  Google Scholar 

  • Moss, R., G. Giulian and M. Greaser. (1982) Physiological effects accompanying the removal of myosin LC2 from skinned skeletal muscle fibers. J. Biol. Chem. 257:8588–8591.

    PubMed  CAS  Google Scholar 

  • Mrakovcic-Zenic, A. and E. Reisler. (1983) Light-chain phosphorylation and cross-bridge conformation in myosin from vertebrate skeletal muscle. Biochemistry 22:525–529.

    PubMed  CAS  Google Scholar 

  • Niimura, H., L. L. Bachinski, S. Sangwatanaroj, H. Watkins, A. E. Chudley, W. McKenna, A. Kristinsson, R. Roberts, M. Sole, B.J. Maron, J. G. Seidman, and C. E. Seidman. (1998) Mutations in the gene for cardiac myosin-binding protein C and late-onset familial hypertrophic cardiomyopathy. New England J. Medicine 338:1248–1257.

    CAS  Google Scholar 

  • Offer, G., C. Moos and R. Starr. (1973) A new protein of the thick filaments of vertebrate skeletal myofibrils: extraction, purification and characterization. J. Mol. Biol. 74:653–676.

    PubMed  CAS  Google Scholar 

  • Okagaki, T., F. E. Weber, D. A. Fischman, K. T. Vaughan, T. Mikawa, and F. C. Reinach. (1993) The major myosin-binding domain of skeletal muscle MyBP-C (C-protein) resides in the COOH-terminal immunoglobulin C2 motif. J. Cell Biol. 123:619–626.

    PubMed  CAS  Google Scholar 

  • Ostap, E., V. Barnett and D. Thomas. (1995) Resolution of three structural states of spin-labeled myosin in contracting muscle. Biophy. s. J. 69:177–188.

    CAS  Google Scholar 

  • Padron, R., L. Alamo, J. Murgich, and R. Craig. (1998) Towards an atomic model of the thick filaments of muscle. J. Mol. Biol. 275:35–41.

    PubMed  CAS  Google Scholar 

  • Padron, R. and R. Craig. (1989) Disorder induced in non-overlap myosin crossbridges by loss of ATP. Biophys. J. 56: 927–935.

    PubMed  CAS  Google Scholar 

  • Padron, R., N. Pante, H. Sosa and J. Kendrick-Jones. (1991) X-ray diffraction study of the strctrual changes accompanying phosphorylation of tarantula muscle. J. Mus. Res. Cell Motil. 12:235–241.

    CAS  Google Scholar 

  • Parry, D. A. (1981) Structure of rabbit skeletal myosin: analysis of the amino acid sequences of two fragments from the rod region. J. Mol. Biol. 153:459–464.

    PubMed  CAS  Google Scholar 

  • Pask, H. T., K. L. Jones, P. K. Luther, and J. M. Squire. (1994) M-band structure, M-band interactions and contraction speed in vertebrate cardiac muscles. J. Muscle res. Cell Motil. 15:633–645.

    PubMed  CAS  Google Scholar 

  • Patel, J., G. Diffee, X. Huang and R. Moss. (1998) Phosphorylation of myosin regulatory light chain eliminates force-dependent changes in relaxation rates in skeletal muscle. Biophys. J. 74:360–368.

    PubMed  CAS  Google Scholar 

  • Patel, J., G. Diffee and R. Moss. (1996) Myosin regulatory light chain modulates the Ca2+ dependence of the kinetics of tension development in skeletal muscle fibers. Biophys. J. 70:2333–2340.

    PubMed  CAS  Google Scholar 

  • Perrie, W., L. Smillie and S. Perry. (1973) A phosphorylated light chain component of myosin from skeletal muscle. Biochem. J. 135:151–164.

    PubMed  CAS  Google Scholar 

  • Poetter, K., H. Jiang, S. Hassanzadeh, S. Master, A. Chang, M. Dalakas, I. Rayment, J. Sellers, L. Fananapazir and N. Epstein. (1996) Mutations in either the essential or regulatory light chains of myosin are associated with a rare myopathy in human heart and skeletal muscle. Nature Genetics. 13:63–69.

    PubMed  CAS  Google Scholar 

  • Pollard, T. D., D. Bhandari, P. Maupin, D. Wachsstock, A. G. Weeds, and H. G. Zot.(1993) Direct visualization by electron microscopy of the weakly bound intermediates in the actomyosin adenosine triphosphatase cycle. Biophys. J. 64:454–471.

    PubMed  CAS  Google Scholar 

  • Rapp, G., M. Schrumpf and J. Wray. (1991) Kinetics of the structural change in the myosin tilaments ot relaxed psoas fibres after a millisecond temperature-jump. Biophys. J. 59:35a (abstr.)

    Google Scholar 

  • Rayment, I., W. Rypniewski, K. Schmidt-Base, R. Smith, D. Tomchick, M. Benning, D. Winkelmann, G. Wesenberg and H. Holden. (1993) Three-dimensional structure of myosin subfragment-1: a molecular motor. Science (Wash.): 261:50–58.

    CAS  Google Scholar 

  • Ritz-Gold, C., R. Cooke, D. Blumenthal and J. Stull. (1980) Light chain phosphorylation alters the conformation of skeletal muscle myosin. Biochem. Biophys. Res. Comm. 93:209–214.

    PubMed  CAS  Google Scholar 

  • Rome, E. (1972) Relaxation of glycerinated muscles: low angle x-ray diffraction studies. J. Mol. Biol. 65:331–345.

    PubMed  CAS  Google Scholar 

  • Roopnarine, O. and D. Thomas. (1996) Orientation of intermediate nucleotide states of indane dion spinlabeled myosin heads in muscle fibers. Biophys. J. 70:9795–2806.

    Google Scholar 

  • Saraswat, L. and S. Lowey. (1991) Engineered cysteine mutants of myosin light chain 2. J. Biol. Chem. 266:19777–19785.

    PubMed  CAS  Google Scholar 

  • Schlender, K and L. Bean. (1991) Phosphorylation of chicken cardiac C protein by calcium clamodulindependent protein kinase II. J. Biol. Chem. 266:2811–2817.

    PubMed  CAS  Google Scholar 

  • Schlichting, I. and J. Wray. (1986) Behaviour of crossbrdiges in non-overlap frlg muscle in the presence and absence of ATP. J. Mus. Res. Cell Motil. 7:9 (abstr.)

    Google Scholar 

  • Schoenberg, M. (1988) Characterization of the myosin adenosine triphosphate (M.ATP) crossbridge in rabbit and frog skeletal muscle fibers. Biophys. J. 54:135–148.

    PubMed  CAS  Google Scholar 

  • Sellers, J. (1981) Phosphorylation-dependent regulation of Limulus muscle. J. Biol. Chem. 256:9274–9278.

    PubMed  CAS  Google Scholar 

  • Sellers, J. and R.S. Adelstein. Regulation of contractile activity. (1987) In: The Enzymes, Eds: P.D. Boyer and E.G. Krebs. Academic Press, Orlando. pp. 381–418.

    Google Scholar 

  • Sohn, R. L., K. L. Vikstrom, M. Strauss, C. Cohen, A. G. Szent-Gyorgyi, and L. A. Leinwand. (1997) A 29 residue region of the sarcomeric myosin rod is necessary for filament formation. J. Mol. Biol. 266:317–330.

    PubMed  CAS  Google Scholar 

  • Solaro, R. J. and J. Van Eyk. (1996) Altered interactions among thin filament proteins modulate cardiac function. J. Mol. Cell. Cardiol. 28:217–230.

    PubMed  CAS  Google Scholar 

  • Sosa, H., D. Popp, G. Ouyang, and H. E. Huxley. (1994) Ultrastructure of skeletal muscle fibers studied by a plunge quick freezing method: myofilament lengths. Biophys. J. 67:283–292.

    PubMed  CAS  Google Scholar 

  • Squire, J., M. Cantino, M. Chew, R. Denny, J. Harford, L. Hudson, and P. Luther. (1998) Myosin rodpacking schemes in vertebrate muscle thick filaments. J. Struct. Biol. 122:128–138.

    PubMed  CAS  Google Scholar 

  • Squire, J. M. (1981) The Structural Basis of Molecular Contraction. Plenum Press, New York. 157–264.

    Google Scholar 

  • Squire, J. M., J. J. Harford, A. C. Edmun, and M. Sjostrom. (1982) Fine structure of the A-band in cryosections. III. Crossbridge distributionand the axial structure of the human C-zone. J. Mol. Biol. 155:467–494.

    PubMed  CAS  Google Scholar 

  • Squire, J. M., R. J. Podolsky, L. C. Yu, and B. Brenner. (1987) Equatorial X-ray diffraction from resting skinned single fibres of fish muscle: little evidence for crossbridge attachment at low ionic strength. J. Muscle Res. Cell Motil. 8:66.

    Google Scholar 

  • Starr, R., R. Almond, and G. Offer. (1985) Location of C-protein, H-protein, and X-proteinin rabbit skeletal muscle fibre types. J. Muscle Res. Cell Motil. 6:227–256.

    PubMed  CAS  Google Scholar 

  • Starr, R. and G. Offer. (1971) Polypeptide chains of intermediate molecular weight in myosin preparations. FEBS Letters 15:40–44.

    PubMed  CAS  Google Scholar 

  • Starr, R., and G. Offer. (1978) The interaction of C-protein with heavy meromyosin and subfragment-2. Biochem. J. 171:813–816.

    PubMed  CAS  Google Scholar 

  • Starr, R. and G. Offer. (1983) H1-protein and X-protein. Two new components of the thick filaments of vertebrate skeletal muscle. J. Mol. Biol. 170:675–698.

    PubMed  CAS  Google Scholar 

  • Stewart, M. and R. W. Kensler. (1986) Arrangement of heads in relaxed thick filaments from frog skeletal muscle. J. Mol. Biol. 192:831–851.

    PubMed  CAS  Google Scholar 

  • Stewart, M., R. W. Kensler, and R. J. C. Levine. (1985) Three-dimensional reconstructionof thick filaments from Limulus and scorpion muscle. J. Cell Biol. 101:402–411.

    PubMed  CAS  Google Scholar 

  • Stull, J. and C. High. (1977) Phosphorylation of skeletal muscle contractile proteins in vivo. Biochem Biophys. Res. Comm. 77:1078–1083.

    PubMed  CAS  Google Scholar 

  • Sweeney, H.L., B. Bowman and J. Stull. (1993) Myosin light chain phosphorylation in vertebrate striated muscle: regulation and function. Am J. Physiol. 264:C1085–1095.

    PubMed  CAS  Google Scholar 

  • Sweeney, H.L. and J. Stull. (1986) Phosphorylation of myosin in permeabilized mammalian cardiac and skeletal muscle cells. Amer. J. Physiol. 250:c657–660.

    PubMed  CAS  Google Scholar 

  • Sweeney, H.L. and J. Stull. (1990) Alteration of cross-bridge kinetics by myosin light chain phosphorylation in rabbit skeletal muscle: implications for the regulation of actin-myosin interaction. Proc. Natl. Acad. Sci. USA: 87:414–418.

    PubMed  CAS  Google Scholar 

  • Sweeney, H. L., Z. Yang, G. Zhi, J. Stull and K. Trybus. (1994) Charge replacement near the phosphorylatable serine of the myosin regulatory light chain mimics aspects of phosphorylation. Proc. Natl. Acad. Sci. USA 91:1490–1494.

    PubMed  CAS  Google Scholar 

  • Taylor, E. W. (1979) Mechanism of actomyosin ATPase and the problem of muscle contraction. CRC Crit. Rev. Biochem. 7:103–164.

    Google Scholar 

  • Trybus, K. (1994) Role of myosin light chains. J. Mus. Res. Cell Motil. 15:587–594.

    CAS  Google Scholar 

  • Tohtong, R., H. Yamashita, M. Graham, J. Laeberle, A. Simcox and D. Maughan. (1995) Impairment of muscle function caused by mutations of phosphorylation sites in myosin regulatory light chains. Nature (London) 374:650–653.

    CAS  Google Scholar 

  • Uyeda, T. Q. P., P. D. Abramson, and J. A. Spudich. (1996) The neck region of the myosin motor domain acts as a lever to generate movement. Proc. Natl. Acad. Sci. 93:4459–4464.

    PubMed  CAS  Google Scholar 

  • Variano-Marston, E., C. Franzini-Armstrong, and J. C. Haselgrove. (1984) The structure and deposition of crossbridges in deep-etched fish muscle. J. Muscle Res. Cell Motil. 5:363–386.

    Google Scholar 

  • Vaughan, K. T., F. E. Weber, S. Einheber, and D. A. Fischman. (1993b) Molecular cloning of chicken myosin-binding protein IH (MyBP) H (96 KDa protein) reveals extensive homology with the MyBR-C (C-protein) with conserved immunoglobulin C2 and fibronectin type III motifs. J. Biol. Chem. 268:3670–3676.

    PubMed  CAS  Google Scholar 

  • Vaughan, K. T., F. E. Weber, and D. A. Fischman. (1992) cDNA cloning and sequence comparisons of human and chicken muscle C-protein and 86kDA protein. Symp. Soc. Exp. Biol. 46:167–177.

    PubMed  CAS  Google Scholar 

  • Vaughan, K. T., F. E. Weber, F. C. Reinach, T. Ried, D. Ward, and D. A. Fischman. (1993a) Human myosin-binding protein H(MyBD-H): complete primary sequence, genomic organization, and chromosomal localization. Genomics 16:34–40.

    PubMed  CAS  Google Scholar 

  • Venema, R.C. and J. Kuo. (1993) Protein kinase C mediated phosphorylation of troponin I and C protein in isolated myocardial cells is associated with inhibition of actomyosin MgATPase. J. Biol. Chem. 268:2705–2711.

    PubMed  CAS  Google Scholar 

  • Vibert, P. and R. Craig. 1985. Structural changes that occur in scallop myosin filaments upon activation. J. Cell Biol. 101:830–837.

    PubMed  CAS  Google Scholar 

  • Wakabayashi, K. (1992) Small-angle synchrotron x-ray scattering reveals distinct shape changes of the myosin head during hydrolysis of AITP. Science. 258:443–447.

    PubMed  CAS  Google Scholar 

  • Wakabayashi, K., T. Akiba, K. Hirose, A. Tomioka, M. Tokunaga, M. Suzuki, C. Toyoshima, K. Sutoh, K. Yamamoto, T. Matsumoto, K. Saeki, and Y. Amemiya. (1988) Temperature-induced change of thick filament and locationof the functional sites of myosin. Advances in Experimental Medicine and Biology 226:39–48.

    PubMed  CAS  Google Scholar 

  • Walker, M., H. White, H. Belknap, and J. Irinick. (1994) Electron cryomicroscopy of acto-myosin-S 1 during steady-state ATP hydrolysis. Biophys. J. 66:1563–1572.

    PubMed  CAS  Google Scholar 

  • Wang, F., B. Martin and J. Sellers. (1993) Regulation of actormyosin interactions in Limulus muscle proteins. J. Biol. Chem. 268:3776–3780.

    PubMed  CAS  Google Scholar 

  • Wang, K., R. McCarter, J. Wright, J. Beverly, and R. Ramirez-Mitchell. (1993) Viscoelasticity of the sarcomere matrix of skeletal muscles. The titin-myosin composite filament is a dual stage molecular spring. Biophys. J. 64:1161–1177.

    PubMed  CAS  Google Scholar 

  • Wang, K., J. McClure, and A. Tu. (1979) Titin: Major myofibrillar components of striated muscle. Proc. Natl. Acad.Sci. USA 76:3698–3702.

    PubMed  CAS  Google Scholar 

  • Weber F., K. Vaughan, F. Reinach and D. Fischman. (1993) Complete sequence of human fast-type and slow-type muscle myosin binding protein C (MyBP-C): differential expression, conserved domain structure and chromosome assignment. Eur. J. Biochem. 216:661–669.

    PubMed  CAS  Google Scholar 

  • Weisberg, A. and S. Winegrad. (1996) Alteration of myosin cross bridges by phosphorylation of myosinbinding protein C in cardiac muscle. Proc. Natl. Acad. Sci. USA 93:8999–9003.

    PubMed  CAS  Google Scholar 

  • Weisberg, A. and S. Winegrad. (1998) Relation between crosshridge structure and actomyosin ATPase activity in rat heart. Cire Res. 83:60–72.

    CAS  Google Scholar 

  • Whittaker, M., E. M. Wilson-Kubalek, J. E. Smith, L. Faust, R. A. Milligan, and 11. L. Sweeney. (1995) A 35-A movement of smooth muscle myosin on AIDP release. Nature 378:748–753.

    PubMed  CAS  Google Scholar 

  • Winegrad, S. (1999) Cardiac myosin binding protein C. Circ. Res. 84:1117–1126.

    PubMed  CAS  Google Scholar 

  • Winegrad, S. and R. Levine. (2000) Effect of extracellular Ca on the structure of thick filaments in cardiac muscle. Biophys. J. 78:119A (abstr.)

    Google Scholar 

  • Winegrad, S. and A. Weisberg. (1987) Isozyme-specilic modifïcations of myosin ATflPase by cyclic AMIP in rat heart. Circ. Res. 60:384–392.

    PubMed  CAS  Google Scholar 

  • Wray, J. S. (1987) Structure of relaxed myosin filaments in relation to nucleotide state in vertebrate skeletal muscle. J. Muscle Res. Cell Motil. 8:62.

    Google Scholar 

  • Wray, J., R. Goody and K. I Iolmes. (1986) Toward a molecular mechanism for the crosshridge cycle. Adlv. Exp. Med Biol. 266:49–59.

    Google Scholar 

  • Xu, S., J. Gu, T. Rhodes, B. Belknap, G. Rosenbaum, G. Offer, L. White and L. Yu. (1999) The M.ADIP.1Pi state is required for helical order in the thick filaments of skeletal muscle. Biophys. J. 77:2665–2776.

    PubMed  CAS  Google Scholar 

  • Xu, S., M. Kress, and II. E. Iluxley. (1987) X-ray diffraction studies of the structural state of crossbridges in skinned frog sartorius muscle at low ionic strength. J. Muscle Res. Cell Motil. 8:39–54.

    PubMed  CAS  Google Scholar 

  • Xu, S., S. Malinchik, D. Gilroy, T. Kraft, B. Brenner and L. Yu. (1997) X-ray diffraction studies of crossbridges weakly hound to actin in relaxed skinned fibers of rabbit psoas muscle. Biophys. J. 73:2292–2303.

    PubMed  CAS  Google Scholar 

  • Yagi, W., E. J. O’Brien, and I. Matsubara. (1981) Changes of thick filament structure during contraction of frog striated muscle. Biophys. J. 33:121–138.

    PubMed  CAS  Google Scholar 

  • Yamamoto, K. and C. Moos. (1981) A comparative study of C-proteins from heart and skeletal muscles. Biophys. J. 33:A237.

    Google Scholar 

  • Yamamoto, K. and C. Moos. (1983) The C-proteins of rabbit red, white, and cardiac muscles. J. Biol. Chem. 258:8395–8401.

    PubMed  CAS  Google Scholar 

  • Yang, Z., J. Stull, R. Levine and I I. L. Sweeney. (1998) Changes in interfïlament spacing mimic the effects of myosin regulatory light chain phosphorylation in rabbit psoas f ïbers. J. Struct. Biol. 121: 139–148.

    Google Scholar 

  • Yang, Z. and I I. L. Sweeney. (1995) Restoration of phosphorylation-dependent regulation to the skeletal muscle regulatory light chain. J. Biol. C.hem. 270:1–4.

    Google Scholar 

  • Yu, B., J. A. French, L. Carrier, R. W. Jeremy, D. R. McTaggart, M. R. Nicholson, B. Ilambly, C. Semsarian, D. R. Richmond, K. Schwartz, and R. J. Tlrent. (1998) Molecular pathology of familial hypertrophic cardiomyopathy caused by mutations in cardiac myosin binding protein C gene. J. Medl. Genet. 35:205–210.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Levine, R.J.C., Kensler, R.W. (2002). The Thick Filament of Vertebrate Striated Muscle. In: Solaro, R.J., Moss, R.L. (eds) Molecular Control Mechanisms in Striated Muscle Contraction. Advances in Muscle Research, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9926-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9926-9_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6069-3

  • Online ISBN: 978-94-015-9926-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics