Skip to main content

In Vitro Regeneration and Genetic Transformation of Cowpea, Mungbean, Urdbean and Azuki Bean

  • Chapter
Applied Genetics of Leguminosae Biotechnology

Part of the book series: Focus on Biotechnology ((FOBI,volume 10B))

Abstract

Vigna species contribute a vital component of vegetarian diet of the resource poor population of underdeveloped and developing countries. Focus is to increase its yield by elevating and/or imparting resistance for diseases, insect pests and rescuing from natural genetic inadequacies. Absence of sufficient and satisfactory level of genetic variability within the germplasm has been the major hurdle in their improvement by conventional breeding. The immense potential of biotechnological tools to supplement breeding programmes to bring into elite germplasm of Vigna species is being realized. Much progress has been made in in vitro regeneration of sexually mature plants, in majority of these recalcitrant species, from various tissues and considerable success in generating plants from protoplast of Vigna aconitifolia. While attempts are being made to develop suitable transformation protocols for most of these species, commendable success has been achieved in Vigna angularis by generation of transgenics resistant to storage pests. An overview of the in vitro regeneration and critical analysis of the genetic transformation studies in major Vigna species is presented. The bottlenecks to overcome their recalcitrance vis-à-vis the advantages and limitations of all those transformation techniques applicable, along with future directions in research, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahuja M R and Singh B V (1977) Induced genetic variability in mungbean through interspecific hybridization. Indian J. Genet. Plant Breed., 37: 133–137.

    Google Scholar 

  • Akella V and Lurquin (1993) Expression of cowpea seedlings of chimeric transgenes after electroporation into seed-derived embryos. Plant Cell Rep., 12: 110–117.

    Article  CAS  Google Scholar 

  • Aragão F J L and Rech E L (1997) Morphological factors influencing recovery of transgenic bean plants (Phaseolus vulgaris L.) of a carioca cultivar. Intl. J. Plant Sci., 158: 157–163.

    Article  Google Scholar 

  • Aragão F J L, Sarokin L, Vianna G R and Rech E L (2000) Selection of transgenic meristematic cells utilizing a herbicidal molecule results in the recovery of fertile transgenic soybean (Glycine max (L.) Merrill) plants at high frequency. Theor.Appl. Genet., 101: 1–6.

    Article  Google Scholar 

  • Arya I D and Chandra N (1989) Organogenesis in anther derived callus cultures of cowpea (Vigna unguiculata L. Walp.). Curr. Sci., 58: 257–259.

    Google Scholar 

  • Att-Moerbe J, Neddermann P, von Lintig J, Weiler E W and Schroeder J (1988) Temperature-sensitive step in Ti plasmid vir-region induction and correlation with cytokinin secretion by Agrobacterium. Mol. Gen. Genet., 213: 1–8.

    Article  Google Scholar 

  • Avenido R A and Hattori K (1999) Differences in shoot regeneration response from cotyledonary node expiants in Asiatic Vigna species support genomic grouping within subgenus Ceratotropis (Piper) Verde. Plant Cell Tiss. Org. Cult., 58: 99–110.

    Article  Google Scholar 

  • Babaoglu M, Davey M R and Power J B (2000) Genetic engineering of grain legumes: key transformation events. Ag. Biotech Net, 2: 4BN050.

    Google Scholar 

  • Bajaj Y P S and Dhanju M S (1979) Regeneration of plants from apical meristem tips of some legumes. Curr Sci., 48: 906–907.

    Google Scholar 

  • Bajaj Y P S and Singh H (1980) In vitro induction of androgenesis in mungbean (Phaseolus aureus L.). Indian J. Exp. Biol., 18: 1316–1318.

    CAS  Google Scholar 

  • Bean S J, Gooding P S, Mullineaux P M and Davis D R (1997) A simple system for pea transformation. Plant Cell Rep., 16: 513–519.

    Google Scholar 

  • Bhadra S K, Hammatt N and Davey M R (1990) Callus induction from seedling protoplasts of Vigna gracilis and V. trilobata. SABRAO J., 22: 25–33.

    Google Scholar 

  • Bhadra S K, Hammatt N and Davey M R (1991) Tissue and protoplast culture of rice bean (Vigna umbellata). Trop Agric, 68: 344–348.

    Google Scholar 

  • Bhadra S K, Hammatt N, Power J B and Davey M R (1994) A reproducible procedure for plant regeneration from seedling protoplasts of Vigna sublobata. Plant Cell Rep., 14: 175–189.

    CAS  Google Scholar 

  • Bharal S and Rashid (1980) Isolation of protoplasts from stem and hypocotyl of the legume Vigna sinensis and some factors affecting their regeneration. Protoplasma, 102: 307–313.

    Article  Google Scholar 

  • Bhargava S C and Smigocki A C (1994) Transformation of tropical grain legumes using particle bombardment. Curr Sci., 66: 439–442.

    Google Scholar 

  • Birch R G (1997) Plant transformation: problems and strategies for practical application. Annu. Rev. Plant. Physiol. Mol. Biol., 48: 297–326.

    Article  CAS  Google Scholar 

  • Burrus M, Molinier J, Himber C, Hunfold R, Bronner R, Rousselin P and Hahne G (1996) Agrobacterium-mediated transformation of sunflower (Helianthus annuus L.) shoot apices transformation patterns. Mol. Breed., 2: 329–338.

    Article  CAS  Google Scholar 

  • Chandra M and Pal A (1995) Differential response of the two cotyledons of Vigna radiata in vitro. Plant Cell Rep., 15: 248–253.

    CAS  Google Scholar 

  • Chen H K, Mok M C and Mok D W S (1990) Somatic embryogenesis and organogenesis from interspecific hybrid embryos of Vigna glabrescens and V radiata. Plant Cell Rep., 9: 77–79.

    Article  Google Scholar 

  • Chowdhury V K, Sareen P K, Sharma D R, Chowdhury J B and Gupta V K (1983) Establishment of callus and cell suspensions and isolation of mutant cell lines in mungbean (Vigna radiata var. aureus). In: Plant Cell Culture in Crop Improvement (Eds. Sen S K and Giles K L), Vol. 22. Plenum Press, New York and London, 405–409.

    Google Scholar 

  • Chowira G M, Akella V, Fuerst P E and Lurquin P F (1996) Transgenic grain legumes obtained by in planta electroporation-mediated gene transfer. Mol. Biotechnol., 5: 85–96.

    Article  Google Scholar 

  • Chowira G M, Akella V and Lurquin P F (1995) Electroporation-mediated gene transfer into intact nodal meristems in planta. Mol. Biotechnol., 3: 17–23.

    Article  Google Scholar 

  • Christou P (1994) Biotechnology of crop legumes. Euphytica, 74: 165–185.

    Article  Google Scholar 

  • Christou P (1995) Strategies for variety-independent genetic transformation of important cereals, legumes and woody species utilizing particle bombardment. Euphytica, 85: 13–27.

    Article  Google Scholar 

  • Christou P (1997) Biotechnology applied to grain legumes. Field Crops Res., 53: 187–204.

    Article  Google Scholar 

  • Curtis I S, Power J B, Blackhall N W, De Laat A M M and Davey M R (1994) Genotype-independent transformation of lettuce using Agrobacterium tumefaciens. J. Exp. Bot., 45: 1441–1449.

    Article  CAS  Google Scholar 

  • Das D K, Shiva Prakash and Bhalla-Sarin N (1998) An efficient regeneration system of blackgram (Vigna mungo L.) through organogenesis. Plant Sci., 143: 199–206.

    Article  Google Scholar 

  • De Block M (1993) The cell biology of plant transformation: current state, problems, prospects and implications for plant breeding. Euphytica, 71: 1–14.

    Article  Google Scholar 

  • Dekeyser R A, Claes B, De Rycke RMU, Habets M E, Montagu M V and Caplan A B (1990) Transient gene expression in intact and organized rice tissues. Plant Cell, 2: 591–602.

    PubMed  CAS  Google Scholar 

  • Dillen W, Clercq J De, Kapila J, Zambre M, Montagu M V and Angenon G (1997) The effect of temperature on Agrobacterium tumefaciens-medialed gene transfer to plants. Plant J., 12: 1459–1463.

    Article  CAS  Google Scholar 

  • Dillen W, Engler G, Montagu M V and Angenon G (1995) Electroporation-mediated DNA delivery to seedling tissues of Phaseolus vulgaris L. (common bean). Plant Cell Rep., 15: 119–124.

    Article  CAS  Google Scholar 

  • Eapen S (1988) Callus induction from mesophyll and hypocotyl protoplasts of mungbean (Vigna radiata L.). Ann. Bot., 62: 441–443.

    CAS  Google Scholar 

  • Eapen S and George L (1990) Ontogeny of somatic embryos of Vigna aconitifolia, Vigna mungo and Vigna radiata. Ann. Bot., 66: 219–226.

    Google Scholar 

  • Eapen S, Kohler F, Gerdemann M and Schieder O (1987) Cultivar dependence of transformation rates in moth bean after co-cultivation of protoplasts with Agrobacterium tumefaciens. Theor. Appl. Genet., 75: 207–210.

    Article  Google Scholar 

  • Escudero J, Neuhaus G, Schlappi M and Hohn B (1996) T-DNA transfer in meristematic cells of maize provided with intracellular Agrobacterium. Plant J., 5: 355–360.

    Article  Google Scholar 

  • Evans D A (1989) Somaclonal variation-genetic basis and breeding applications. Trends in Genetics, 5: 46–50.

    Article  PubMed  CAS  Google Scholar 

  • Fillipone E (1993) To improve resistance against diseases and pests. Grain Legumes, 2: 20–21.

    Google Scholar 

  • Franklin G and Ignacimuthu S (2000) Differential morphogenetic response of cotyledonary expiants of Vigna mungo. Biol. Plant., 43: 1–4.

    Article  Google Scholar 

  • Frary A and Earle E D (1996) An examination of factors affecting the efficiency of Agrobacterium-mediated transformation of tomato. Plant Cell Rep., 16: 235–240.

    CAS  Google Scholar 

  • Freytag A H, Rao-Arelli A P, Anard S C, Wrather J A and Owens L D (1989) Somaclonal variation in soybean plants regenerated from tissue culture. Plant Cell Rep., 8: 199–202.

    Article  Google Scholar 

  • Fu X, Due L T, Fontana S, Bong B B, Tinjuangjun P, Sudhakar D, Twyman R M, Christou P and Kohli A (2000) Linear transgene constructs lacking vector backbone sequences generate low copy-number transgenic plants with simple integration patterns. Transgenic Res., 9: 11–19.

    Article  PubMed  CAS  Google Scholar 

  • Garcia T A, Hille J and Goldbach R (1986) Transformation of cowpea, Vigna unguiculata cells with an antibiotic resistance gene using a Ti-plasmid derived vector. Plant Sci., 44: 37–46.

    Article  CAS  Google Scholar 

  • Garcia J A, Hille J, Vos P and Goldbach R (1987) Transformation of cowpea (Vigna unguiculata Walp.) cells with a full length DNA copy of cowpea mosaic virus mRNA. Plant Sci., 48: 89–98.

    Article  CAS  Google Scholar 

  • Ge K, Wang Y, Yuang P, Yang J, Nie Z, Testa D and Lee N (1989) Plantlet regeneration from protoplasts isolated from mesophyll cells of adzuki bean (Phaseolus angularis Wright). Plant Sci., 63: 209–246.

    Article  Google Scholar 

  • Geetha N, Venkatachalam P and Rao G R (1997a) Plant regeneration and propagation of blackgram (V. mungo L. Hepper) through tissue culture. Trop. Agric, 74: 73–76.

    Google Scholar 

  • Geetha N, Venkatachalam P and Rao G R (1997b) In vitro plant regeneration from different seedling expiants of blackgram (V. mungo L. Hepper) via organogenesis. Breed. Sci., 47: 311–315.

    CAS  Google Scholar 

  • Geetha N, Venkatachalam P and Rao G R (1997c) Somatic embryogenesis and plant regeneration from cell suspension cultures of blackgram (Vigna mungo L. Hepper). Physiol. Mol. Biol. Plants, 3: 25–30.

    Google Scholar 

  • Gill R, Eapen S and Rao P S (1987a) Callus induction from protoplasts of V unguiculata, V. sublobata and V. mungo. Theor. Appl. Genet., 74: 100–103.

    Article  Google Scholar 

  • Gill R, Eapen S and Rao P S (1987b) Morphogenetic studies of cultured cotyledons of urd bean (V. mungo L. Hepper). J. Plant. Physiol., 130: 1–5.

    Article  CAS  Google Scholar 

  • Girija S, Ganapathi A and Ananthakrishanan G (2001) Somatic embryogenesis in Vigna radiata (L.) Wilczek. Indian J. Exp. Biol., 38: 1241–1244.

    Google Scholar 

  • Godwin 1, Gordon T, Ford-Lloyd B and Newbury H J (1991) The effects of acetosyringone and pH on Agrobacterium-mediated transformation vary according to plant species. Plant Cell Rep., 9: 671–675.

    Article  CAS  Google Scholar 

  • Goel S, Mudgal A K and Gupta S C (1983a) Development of plants from in vitro cultured shoot tips of Vigna mungo and Vigna radiata. Trop. Plant Sci. Res., 1: 31–33.

    Google Scholar 

  • Goel S, Mudgal A K and Gupta S C (1983b) Isolation of protoplasts from leaves of Vigna radiata-legume. Trop. Plant Sci. Res., 1: 339–341.

    Google Scholar 

  • Gosal S S and Bajaj Y P S (1984) Isolation of sodium-chloride resistant cell lines in some grain-legumes. Indian J. Exp. Biol., 22: 209–214.

    Google Scholar 

  • Gulati A (1993) Isolation and characterization of salt tolerant cell lines of Vigna radiata (L.) Wilczek. Ph.D Thesis submitted to Dept. of Bio-sciences, M. D. University, Rohtak (India).

    Google Scholar 

  • Gulati A and Jaiwal P K (1990) Culture conditions affecting plant regeneration from cotyledon of Vigna radiata (L.) Wilczek. Plant Cell Tiss. Org. Cult., 23: 1–7.

    Article  CAS  Google Scholar 

  • Gulati A and Jaiwal P K (1992) In vitro induction of multiple shoots and plant regeneration from shoot tips of mungbean (Vigna radiata (L.) Wilczek). Plant Cell Tiss. Org. Cult., 29: 199–205.

    Article  CAS  Google Scholar 

  • Gulati A and Jaiwal P K (1994) Plant regeneration from cotyledonary node expiants of mungbean (Vigna radiata L. Wilczek). Plant Cell Rep., 15: 500–505.

    Google Scholar 

  • Hadiuzzaman S and Miah M A K (1989) In vitro organogenesis in rice bean (Vigna umbellata). Bangladesh J. Bot., 18: 157–162.

    Google Scholar 

  • Hiei Y, Komari T and Kubo T (1997) Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol. Biol., 35: 205–218.

    Article  PubMed  CAS  Google Scholar 

  • Hiei Y, Ohta S, Komari T and Lumashire T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J., 6: 271–282.

    Article  PubMed  CAS  Google Scholar 

  • Hoekema A, Hirsch P R, Hooykaas P J J and Schilperoort R A (1983) A binary plant vector strategy based on separation of vir and T-region of the Agrobacterium tumefaciens Ti Plasmid. Nature, 303: 179–180.

    Article  CAS  Google Scholar 

  • Holford P, Hernandez N and Newburg H T (1992) Factors influencing the efficiency of T-DNA transfer during co-cultivation of Antirrhinum majus with Agrobacterium tumefaciens. Plant Cell Rep., 11: 196–199.

    CAS  Google Scholar 

  • Ignacimuthu S and Arockiaswamy (1999) Plant regeneration from callus and somatic embryogenesis in Vigna mungo L. Hepper. In: Proc. Natl. Sym. on Role of Plant Tissue Culture in Biodiversity and Economic Development, held at Pantnagar, India, 7–8.

    Google Scholar 

  • Ignacimuthu S and Franklin G (1999) Regeneration of plantlets from cotyledons and embryonic axis expiants of Vigna mungo L. Hepper. Plant Cell Tiss. Org. Cult., 55: 75–80.

    Article  Google Scholar 

  • Ignacimuthu S, Franklin G and Melchias G (1997) Multiple shoot formation and in vitro fruiting from cotyledonary nodes of Vigna mungo L. Hepper. Curr. Sci., 73: 733–735.

    Google Scholar 

  • Ishimoto M, Sato T, Chrispeels M J and Kitamura K (1996) Bruchid resistance of transgenic azuki bean expressing seed alpha-amylase inhibitor of common bean. Entomologia Experimentalis et Applicata, 79 (3): 309–315.

    Article  CAS  Google Scholar 

  • Jaiwal P K and Gulati A (1995) Current status and future strategies of in vitro culture techniques for genetic improvement of mungbean (Vigna radiata (L.) Wilczek). Euphytica, 86: 167–181.

    Google Scholar 

  • Jaiwal P K, Kumari R, Ignacimuthu S, Potrykus I and Sautter C (2001) Agrobacterium-mediated transformation of mungbean (Vigna radiata) — a recalcitrant grain legume. Plant Sci., 161: 239–247.

    Article  PubMed  CAS  Google Scholar 

  • Jaiwal P K, Sautter C and Potrykus I (1998) Agrobacterium rhizogenes-mediated gene transfer in mungbean (Vigna radiata L. (Wilczek)). Curr. Sci., 75: 41–45.

    CAS  Google Scholar 

  • Jefferson R A, Kavanagh T A and Bevan M W (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J., 6: 3901–3907.

    PubMed  CAS  Google Scholar 

  • Jeswani L M and Baldev B (1990) Advances in pulse production technology, Publication and Information Division, ICAR, New Delhi.

    Google Scholar 

  • Jha T B and Roy S C (1980) Rapid callus formation at low mannitol level from protoplasts of Vigna sinensis. Indian J. Exp. Biol., 18: 87–89.

    CAS  Google Scholar 

  • Joshi C P and Schieder O (1987) Isolation, culture and regeneration of legume protoplasts. In: Proc. Sym. Plant Cell and Tissue Culture of Economically Important Plants. (Ed Reddy G M), Hyderabad, India, 33–36.

    Google Scholar 

  • Kartha K K, Paul K, Neung N L and Mroginski L A (1981) Plant regeneration from meristems of grain legumes: Soybean, Cowpea, Peanut, Chickpea and Bean. Can. J. Bot., 59: 1671–1679.

    Article  CAS  Google Scholar 

  • Karthikeyan A, Sarma K S and Veluthambi K (1996) Agrobacterium tumefaciens-mediated transformation of Vigna mungo (L.) Hepper. Plant Cell Rep., 15: 328–331.

    Article  CAS  Google Scholar 

  • Kim D H (1994) Highlights of mungbean at AVRDC in the 1990s. In: Mungbean Session. Intl. Sym. on Pulses Res., New Delhi, April 6.

    Google Scholar 

  • Kim J W and Minamikawa T (1996) Transformation and regeneration of French bean plants by particle bombardment process. Plant Sci., 117: 131–138.

    Article  CAS  Google Scholar 

  • Kim J W and Minamikawa T (1997) Stable delivery of a concanavalin promoter-β-glucuronidase gene fusion into French bean by particle bombardment. Plant Cell Physiol., 38: 70–75.

    Article  CAS  Google Scholar 

  • Kitamura K, Ishimoto M and Sawa M (1988) Inheritance of resistance to infestation with adzuki bean weevil in Vigna radiata. Japan J. Breed., 38: 459–464.

    Google Scholar 

  • Knittel N, Grubber V, Hahne G and Lenee P (1994) Transformation of sunflower (Helianthus annuus L.): A reliable protocol. Plant Cell Rep., 14: 81–86.

    CAS  Google Scholar 

  • Kohler F, Golz C, Eapen S and Schieder O (1987b) Influence of plant cultivar and plasmid DNA on transformation rates in tobacco and moth bean. Plant Sci., 53: 87–91.

    Article  Google Scholar 

  • Kohler F, Golz C, Eapen S, Kohn H and Schieder O (1987a) Stable transformation of moth bean (Vigna aconitifolia) via direct gene transfer. Plant Cell Rep., 6: 313–317.

    Article  Google Scholar 

  • Koluthangan S, Ganapathi A, Shajahan A and Kathiravan K (1995) Somatic embryogenesis in cell suspension culture of cowpea (Vigna unguiculata L. Walp). Israeli Plant Sci., 43: 385–390.

    Article  Google Scholar 

  • Kononowicz A K, Narasimhan M L, Reuveni M, Moclatchey G, Bressan P H, Zhang Y, Larosa P C, Murdock L L, Chrispeels M J, Bressan R A and Hasegawa P M (1993) Genetic transformation of cowpea (Vigna unguiculata) using microprojectile bombardment and Agrobacterium tumefaciens infection. Plant Physiol., 102, suppl., Abstract no. 945.

    Google Scholar 

  • Kumar V, Jones, B and Davey M R (1991) Transformation by Agrobacterium rhizogenes and regeneration of transgenic shoots of the wild soybean Glycine argyrea. Plant Cell Rep., 10: 135–138.

    CAS  Google Scholar 

  • Kumar V and Davey M R (1991) Genetic improvement of legumes using somatic cell and molecular techniques. Euphytica, 55: 159–169.

    Article  Google Scholar 

  • Lee N G, Stein B, Suzuki H and Verma D P S (1993) Expression of antisense nodulin-35 RNA in Vigna aconitifolia transgenic root nodules retards peroxisome development and affects nitrogen availability to the plant. Plant J., 3: 599–606.

    Article  PubMed  CAS  Google Scholar 

  • Malik K A and Saxena P K (1992) Somatic embryogenesis and shoot regeneration from intact seedlings of Phaseolus acutifolius (L.), P. aureus (L.) Wilczek, P. coccineus (L.). and P. whightii (L.). Plant Cell Rep., 11: 163–168.

    Article  CAS  Google Scholar 

  • Marty D (1988) La tomate dans tous ses états. Biofutur, 72: 43–48.

    Google Scholar 

  • Mathews H (1987) Morphogenetic responses from in vitro cultured seedling expiants in mungbean (Vigna radiata (L.) Wilczek). Plant Cell Tiss. Org. Cult., 11: 233–240.

    Article  Google Scholar 

  • Matsuoka M, Kai Y and Yoshida T (1997) Induction of adventitious buds and gene transfer by particle gun in cowpea (Vigna unguiculata). Bulle of the Chugoku-Nat-Agri. Expt. Stat., 18: 31–39.

    Google Scholar 

  • Maximova S N, Dandekar A M and Guiltinan M J (1998) Investigation of Agrobacterium-mediated transformation of apple using green fluorescent protein: high expression and low stable transformation suggest that factors other than T-DNA transfer are rate-limiting. Plant Mol. Biol., 37: 549–559.

    Article  PubMed  CAS  Google Scholar 

  • McHughen A and Jordan M C (1989) Recovery of transgenic plants from escape shoots. Plant Cell Rep., 7:611–614.

    Google Scholar 

  • McHughen A, Jordan M and Feist G (1989) A preculture period prior to Agrobacterium inoculation increases production of transgenic plants. Plant Physiol., 135: 245–248.

    Article  Google Scholar 

  • Mendoza A B, Hattori K and Futsuhara Y (1992) Shoot regeneration from callus of immature primary leaves in mungbean Vigna radiata (L.) Wilczek. Japan J. Breed., 42: 145–149.

    Google Scholar 

  • Mendoza A B and Futsuhara Y (1990) Varietal differences on plant regeneration by tissue culture in mungbean (Vigna radiata). Japan J. Breed., 40: 457–467.

    Google Scholar 

  • Mendoza A B, Hattori K, Nishimura T and Futsuhara Y (1993) Histological and scanning electron microscopic observations on plant regeneration in mungbean cotyledon (Vigna radiata (L.) Wilczek) cultured in vitro. Plant Cell Tiss. Org. Cult., 32: 137–143.

    Article  Google Scholar 

  • Meurer C A, Dinkins R D and Collins G B (1998) Factors affecting soybean cotyledonary node transformation. Plant Cell Rep., 18: 180–186.

    Article  CAS  Google Scholar 

  • Mohapatra U, McCabe M S, Power J B, Schepers F, Arend A V D and Davey M R (1999) Expression of bar gene confers herbicide resistance in transgenic lettuce. Transgenic Res., 8: 33–44.

    Article  CAS  Google Scholar 

  • Mukhopadhyay A, Arumugam N, Nandakumar P B A, Pradhan A K, Gupta V and Pentel D (1992) Agrobacterium-mediated genetic transformation of oil seed Brassica campestris: Transformation frequency is strongly influenced by the mode of shoot regeneration. Plant Cell Rep., 11: 506–513.

    Article  Google Scholar 

  • Muthukumar B, Mariamma M and Gnanam A (1995) Regeneration of plants from primary leaves of cowpea. Plant Cell Tiss. Org. Cult., 42: 153–155.

    Article  Google Scholar 

  • Muthukumar B, Mariamma M, Veluthambi K and Gnanam A (1996) Genetic transformation of cotyledon expiants of cowpea (Vigna unguiculata L. Walp.) using Agrobacterium tumefaciens. Plant Cell Rep., 15: 980–985.

    CAS  Google Scholar 

  • Nagl W and Ehemann A (1994) Transformation of protoplasts from asparagus bean, Vigna unguiculata ssp. Sesquiedalis. L., and attempts of regeneration. Life Sci. Adv. Plant Physiol., 13: 177–182.

    Google Scholar 

  • Nagl W, Ignacimuthu S and Becker J (1997) Genetic engineering and regeneration of Phaseolus and Vigna. State of the art and new attempts. J. Plant Physiol., 150: 625–644.

    Article  CAS  Google Scholar 

  • Ohwi J and Ohashi H (1969) Adzuki beans of Asia. J. Jap Bot., 44: 29–33.

    Google Scholar 

  • Orczyk A N and Orczyk W (2000) Study of the factors influencing Agrobacterium-mediated transformation of pea (Pisum sativum L.). Mol. Breed., 6: 185–194.

    Article  Google Scholar 

  • Pal M, Ghosh U, Chandra M, Pal K and Biswas B B (1991) Transformation and regeneration of mungbean (Vigna radiata). Indian J. Biochem. Biophys., 28: 428–435.

    Google Scholar 

  • Pandey P and Bansal Y K (1989) Plantlet formation from callus cultures of cowpea (Vigna sinensis L.). Curr. Sci., 58: 394–395.

    CAS  Google Scholar 

  • Park S H, Pinson S R M and Smith R H (1996) T-DNA integration into genomic DNA of rice following Agrobacterium inoculation of isolated shoot apices. Plant Mol. Biol., 32: 1135–1198.

    Article  PubMed  CAS  Google Scholar 

  • Patel M B, Bhardwaj R and Joshi A (1991) Organogenesis in Vigna radiata (L.) Wilczek Indian J. Exp. Biol., 29: 619–622.

    Google Scholar 

  • Pellegrineshi A (1997) In vitro plant regeneration via organogenesis of cowpea (V unguiculata L. Walp.). Plant Cell Rep., 17:89–95.

    Article  Google Scholar 

  • Penza R, Lurquin P F and Fillipone E (1991) Gene transfer by co-cultivation of mature embryos with Agrobacterium tumefaciens: Application to cowpea (Vigna unguiculata Walp.). J. Plant Physiol., 138: 39–42.

    Article  CAS  Google Scholar 

  • Petit A, Berkaloff A and Tempe J (1986) Multiple transformation of plant cells by Agrobacterium may be responsible for complex organization of T-DNA in crown gall and hairy root. J. Mol. Genet., 202: 388–398.

    CAS  Google Scholar 

  • Peyachoknagul S, Phonjun C, Pongtongkam P, Suputtitad S and Ngernsiri L (1996) Gene transformation of mungbean (Vigna radiata). Kasetsart J. (Nat. Sci.), 30: 303–311.

    CAS  Google Scholar 

  • Phogat S K, Karthikeyan A S and Veluthambi K (1999) Generation of transformed calli of Vigna radiata (L.) Wilczek by Agrobacterium tumefaciens-mediated transformation. J. Plant Biol., 26 (1): 77–82.

    Google Scholar 

  • Pigeaire A, Abernethy D, Smith P M, Simpson K, Fletcher N, Lu Chin Yi, Atkins C A and Cornish E (1997) Transformation of a grain legume (Lupinus angustifolius L.) via Agrobacterium tumefaciens mediated gene transfer to shoot apices. Mol. Breed., 3: 341–349.

    Article  CAS  Google Scholar 

  • Ponappa T, Brzozowski A E and Finer J J (1999) Transient expression and stable transformation of soybean using jellyfish green fluorescent protein. Plant Cell Rep., 19: 6–12.

    Article  CAS  Google Scholar 

  • Porter J R (1991) Host range and implications of plant infection by Agrobacterium rhizogenes. Crit. Rev. Plant Sci., 10: 387–421.

    Article  Google Scholar 

  • Potrykus I (1990) Gene transfer to plants: assessment and perspectives. Physiol Plant, 79: 125–134.

    Article  CAS  Google Scholar 

  • Prem Anand R, Ganapathi A, Vengadesan G, Selvaraj N, Anbazhagan V R and Kulothungan S (2001) Plant regeneration from immature cotyledon derived callus of Vigna unguiculata (L.) Walp. Curr. Sci., 80: 671–674.

    Google Scholar 

  • Rashid K A, Smartt J and Haq N (1988) Hybridisation in the genus Vigna. In: Proc. Second International Symposium on Mungbean. AVRDC, Bangkok, Thailand, 205–214.

    Google Scholar 

  • Rech E L, Golds T J, Husnain T, Vainstein M H, Jones B, Hammatt N, Mulligan B J and Davey M R (1989) Expression of a chimeric kanamycin resistance gene introduced into the wild soybean Glycine canescens using a cointegrate Ri plasmid vector. Plant Cell Rep., 8: 33–36.

    Article  CAS  Google Scholar 

  • Riazuddin S and Husnain T (1993) Transformation in chickpea (Cicer arietinum L.). In: Biotechnology in Agriculture and Forestry, Vol 23. Plant Protoplasts and Genetic Engineering. IV. (Ed Bajaj Y P S). Springer-Verlag, Berlin, 183–193.

    Chapter  Google Scholar 

  • Ritala A, Aspergren K, Kurten U, Marttila M S, Mannonen L, Hannus R, Kauppinen V, Teeri T H and Enari T M (1994) Fertile transgenic barley by particle bombardment of immature embryos. Plant Mol. Biol., 24: 317–325.

    Article  PubMed  CAS  Google Scholar 

  • Sahoo L, Sushma, Sugla T, Singh N D and Jaiwal P K (2000) In vitro plant regeneration and recovery of cowpea (Vigna unguiculata) transformants via Agrobacterium-mediated transformation. Plant Cell Biotech. Mol. Biol., 1:47–54.

    Google Scholar 

  • Sato T (1995) Basic study of biotechnology in adzuki bean (Vigna angularis Ohwi & Ohashi). Report of Hokkaido Pref Agri. Exp. Station, 87: 1–68.

    CAS  Google Scholar 

  • Sato T, Asaka D, Harada T and Matsukawa I (1993) Plant regeneration from protoplasts of Adzuki bean (Vigna angularis Ohwi & Ohashi). Japan J. Breed., 43: 183–191.

    CAS  Google Scholar 

  • Schoneberg J M, Scelonge C J, Burrus M and Bidney D L (1994) Stable transformation of sunflower using split embryonic axis expiants. Plant Sci., 103: 199–207.

    Article  Google Scholar 

  • Schrammeijer B, Sijmons P C, Elzen P J M and Hoekema A (1990) Meristem transformation of sunflower by Agrobacterium. Plant Cell Rep., 9: 55–60.

    Article  CAS  Google Scholar 

  • Schroeder H, Schotz A, Richardson W T, Spencer D and Higgins T (1993) Transformation and regeneration of two cultivars of pea (Pisum sativum L.) Plant Physiol, 101: 751–757.

    Article  PubMed  CAS  Google Scholar 

  • Sen J and Guha-Mukherjee S (1998) In vitro induction of multiple shoots and plant regeneration in Vigna. In Vitro Cell. Dev. Biol. Plant., 34: 276–280.

    Article  CAS  Google Scholar 

  • Sharma K K and Anjaiah V (2000) An efficient method for the production of transgenic plants of peanut (Arachis hypogaea. L) through Agrobacterium tumefaciens-mediated genetic transformation. Plant Sci., 159: 7–19.

    Article  PubMed  CAS  Google Scholar 

  • Shelp B J, Swanton C J and Hall J C (1992) Glufosinate (Phosphinothricin) mobility in young soybean shoots. J. Plant Physiol, 139: 626–628.

    Article  CAS  Google Scholar 

  • Siefkes-Boer H J, Noonam M J, Bullock D W and Connor A J (1995) Hairy root transformation system in large seeded grain legumes. Israeli Plant Sci., 43: 1–5.

    Article  Google Scholar 

  • Singh B D, Rao G S R L and Singh R P (1982) Polyphenol accumulation in callus cultures of cowpea (Vigna sinensis). Indian J. Exp. Biol., 20: 387–389.

    CAS  Google Scholar 

  • Singh D P, Sharma B L and Dwivedi S (1983) Inheritance of hard seeds in interspecific crosses in mungbean. Indian J. Genet., 43: 378–379.

    Google Scholar 

  • Singh N D, Kumar P A and Jaiwal P K (2002) In vitro regeneration and genetic transformation of pigeonpea. In: Applied Genetics of Leguminoseae Biotechnology (Eds Jaiwal P K and Singh R P). Kluwer Acad. Publ., Dordrecht, Netherlands (in press).

    Google Scholar 

  • Singh R P, Singh B D, Singh R M and Jaiswal H (1985) Genotypic differences in callus growth and organogenesis in green gram. Indian J. Agri. Sci., 55: 612–615.

    Google Scholar 

  • Smartt J (1990) Grain legumes: Evolution and Genetic Resources. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Sonia, Preeti, Sharma P, Ragini and Jaiwal P K (2000) Application of biotechnology and molecular biology for improvement of chickpea (Cicer arietinum L.). In: Recent Advances in Biotechnology (Ed Trivedi P C). Panima Publ., New Delhi, 135–153.

    Google Scholar 

  • Stachel S E, Messens E, Van Montzgu M and Zambryski P (1995) Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature, 318: 624–629.

    Article  Google Scholar 

  • Stachel S E, Nester E W and Zambryski P C (1986) A plant cell factor induces Agrobacterium tumefaciens vir gene expression. Proc. Natl. Acad. Sci. USA, 83: 379–383.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki H, Fowler T and Tierney M (1993) Deletion analysis and localization of sbPRP1, a soybean cell wall protein gene, in roots of transgenic tobacco and cowpea. Plant Mol. Biol., 21: 109–119.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi W, Matsushita J, Kobayashi T, Tanaka O and Beppu T (1998) Plant regeneration from epicotyl segment and callus of Vigna angularis cv Tanbadainagon. Japan J. Crop. Sci., 67: 561–567.

    Article  CAS  Google Scholar 

  • Thomas J C and Khatterman F R (1986) Cytokinin activity induced by thidiazuron. Plant Physiol., 81: 681–683.

    Article  PubMed  CAS  Google Scholar 

  • Tomooka N, Lariungreang C, Nakeeraks P, Egawa Y and Thavarasook C (1992) Development of bruchid-resistant mungbean line using wild mungbean germplasm in Thailand. Plant Breed., 109: 60–66.

    Article  Google Scholar 

  • Verdcourt B (1969) New combinations of Vigna savi. (Leguminoseae-Papilionoideae). Kew Bull., 23: 464.

    Article  Google Scholar 

  • Xu Z H, Davey M R and Cocking E C (1981) Isolation and sustained division of Phaseolus aureus root protoplasts. Z. Pflanzenphysiol, 104: 289–298.

    Google Scholar 

  • Yamada T, Teraishi M, Hattori K and Ishimoto M (2001) Transformation of azuki bean by Agrobacterium tumefaciens. Plant Cell Tiss. Org. Cult., 64: 47–54.

    Article  CAS  Google Scholar 

  • Zapata C, Park S H, El-Zik K M and Swith R H (1999) Transformation of Texas cotton cultivar by using Agrobacterium and the shoot apex. Theor. Appl. Genet., 98: 252–256.

    Article  Google Scholar 

  • Zhang Z, Xing A, Staswick P and Clemente T E (1999) The use of glufosinate as a selective agent in Agrobacterium-mediated transformation of soybean. Plant Cell Tiss. Org. Cult., 56: 37–46.

    Article  CAS  Google Scholar 

  • Zupan J and Zambryski P (1997) The Agrobacterium DNA transfer complex. Crit. Rev. Plant Sci., 16: 279–295.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sahoo, L., Sugla, T., Jaiwal, P.K. (2003). In Vitro Regeneration and Genetic Transformation of Cowpea, Mungbean, Urdbean and Azuki Bean. In: Jaiwal, P.K., Singh, R.P. (eds) Applied Genetics of Leguminosae Biotechnology. Focus on Biotechnology, vol 10B. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0139-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0139-6_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6369-4

  • Online ISBN: 978-94-017-0139-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics