Skip to main content

Molecular Models of Orientational Order

  • Chapter
NMR of Ordered Liquids

Abstract

The relationship between molecular structure and intermolecular interactions on the one hand, and the organization and orientational order of liquid crystals on the other, is certainly a very important issue in both theoretical and experimental research with possible spin offs for technological applications such as the design of molecular constituents that lead to ordered materials with optimal macroscopic properties. Starting from the early theories of Onsager [1] that describe excluded volume effects, and of Maier and Saupe [2, 3] that rely on an approximate representation of dispersion forces, there have been many developments aimed at getting a better understanding of the different aspects of such a general problem. Efforts have concentrated on the improvement of statistical methods that are able to rationalize the order phenomena originating from anisotropic interactions (see Chapter 12). The attainment of such an objective has often required a schematic representation of the molecular entities, for instance approximating molecules as ellipsoids, rods or piles of spheres.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Onsager, L. (1949), N. Y. Acad. Sci., 51:627.

    Article  CAS  Google Scholar 

  2. Maier, W., and Saupe, A. (1959), Z. Naturforsch. A, 14:287.

    Google Scholar 

  3. Maier, W., and Saupe, A. (1960), Z. Naturforsch. A, 15:882.

    Google Scholar 

  4. Burnell, E.E., and de Lange, C.A. (1998), Chemical Reviews 98:2359.

    Article  CAS  Google Scholar 

  5. Marčelja, S. (1974), J. Chem. Phys., 60 :3599.

    Article  Google Scholar 

  6. Marčelja, S. (1973), Nature, 241 :451.

    Article  Google Scholar 

  7. Emsley, J.W., Luckhurst, G.R., and Stockley, C.P. (1982), Proc. R. Soc. London Ser. A, 381:117.

    Article  CAS  Google Scholar 

  8. Photinos, D.J., Samulski, E.T., and Toriumi, H. (1990), J. Phys. Chem., 94:4688.

    Article  CAS  Google Scholar 

  9. Photinos, D.J., Samulski, E.T., and Toriumi, H. (1991), J. Chem. Phys., 94:2758.

    Article  CAS  Google Scholar 

  10. Ferrarini, A., Moro, G.J., Nordio, P.L., and Luckhurst, G.R. (1992), Mol. Phys., 77:1.

    Article  Google Scholar 

  11. Jérôme, B. (1991), Rep. Prog. Phys., 54 :391.

    Article  Google Scholar 

  12. Rapini, A., and Papoular, M. (1969), J. Phys. (Paris), 30 C4 :54.

    Article  Google Scholar 

  13. di Matteo, A., Ferrarini, A., and Moro, G.J. (2000), J. Phys. Chem., 104:764.

    Google Scholar 

  14. di Matteo, A., and Ferrarini, A. (2001), J. Phys. Chem., 105:837.

    Google Scholar 

  15. Evans, R. (1979), Adv. Phys., 28 :143.

    Article  CAS  Google Scholar 

  16. Gelbart, W.M. (1982), J. Chem. Phys., 86 :4298.

    Article  CAS  Google Scholar 

  17. Gelbart, W.M., and Barboy, B. (1980), Acc. Chem. Res., 13 :290.

    Article  CAS  Google Scholar 

  18. Ferrarini, A., and Moro, G.J. (2001), J. Chem. Phys., 114 :596.

    Article  CAS  Google Scholar 

  19. Luckhurst, G.R., Zannoni, C., Nordio, PL., and Segre, U. (1975), Mol. Phys., 30:1345.

    Article  CAS  Google Scholar 

  20. Catalano, D., Forte, C., Veracini, C.A., and Zannoni, C. (1983), Israel J. Chem., 23:283.

    CAS  Google Scholar 

  21. Straley, J.P. (1974), Phys. Rev. A,10:1881.

    Article  Google Scholar 

  22. Zimmerman, D.S., and Burnell, E.E. (1993), Mol. Phys., 78:687.

    Article  Google Scholar 

  23. Connolly, M.L. (1983), J. Appl. Crystallogr., 16:548.

    Article  CAS  Google Scholar 

  24. Richards, F.M. (1977), Ann. Rev. Biophys. Bioeng., 151:6.

    Google Scholar 

  25. Celebre, G., De Luca, G., and Ferrarini, A. (1997), Mol. Phys., 92:1039.

    CAS  Google Scholar 

  26. Zare, N.R. Angular Momentum. Wiley, New York, 1987.

    Google Scholar 

  27. Ferrarini, A., Janssen, F., Moro, G.J., and Nordio, P.L. (1999), Liq. Crystal, 26:201.

    Article  CAS  Google Scholar 

  28. Emsley, J.W., Luckhurst, G.R., and Sachdev, H.S. (1989), Mol. Phys., 67:151.

    Article  CAS  Google Scholar 

  29. Celebre, G., De Luca, G., and Longeri, M. (2000), Phys. Chem. Chem. Phys., 2:1883.

    Article  CAS  Google Scholar 

  30. Cognard, J., Hieu Pan, T., and Basturk, N. (1983), Mol. Cryst. Liq. Cryst., 91:327.

    Article  CAS  Google Scholar 

  31. Chandrakumar, T., and Burnell, E.E. (1997), Mol. Phys., 90:303.

    Google Scholar 

  32. Ferrarini, A., Luckhurst, G.R., Nordio, PL., and Roskilly, S.J. (1994), J. Chem. Phys., 100:1460.

    Article  CAS  Google Scholar 

  33. Ferrarini, A., Moro, G.J., and Nordio, P.L. (1996), Phys. Rev. E, 53 :681.

    Article  CAS  Google Scholar 

  34. Ferrarini, A., Moro, G.J., and Nordio, P.L. (1996), Molec. Phys., 87:485.

    Article  CAS  Google Scholar 

  35. Ferrarini, A. (2001), Phys. Rev. E, 64:21710.

    Article  CAS  Google Scholar 

  36. Ferrarini, A., Nordio, PL., Shibaev, P.V., and Shibaev, V.P. (1998), Liq. Crystals, 24:219.

    Article  CAS  Google Scholar 

  37. Todd, S.M., Ferrarini, A., and Moro, G.J. (2001), Phys. Chem. Chem. Phys., 3:5535.

    Article  CAS  Google Scholar 

  38. Perera, A., and Patey, G.N. (1989), J. Chem. Phys., 91:3045.

    Article  CAS  Google Scholar 

  39. Terzis, A.F., and Photinos, D.J. (1994), Mol. Phys., 83:847.

    Article  CAS  Google Scholar 

  40. Onsager, L. (1936), J. Am. Chem. Soc., 58:1486.

    Article  CAS  Google Scholar 

  41. Tomasi, J., and Persico, M. (1994), Chem. Rev, 94:2027.

    Article  CAS  Google Scholar 

  42. Cramer, C.J., and Truhlar, D.J. (1999), Chem. Rev., 99:2161.

    Article  CAS  Google Scholar 

  43. Frisch, M.J. et al. Gaussian 98 (Revision A.6). Gaussian Inc., Pittsburgh PA, 1998.

    Google Scholar 

  44. GAMESS, Iowa State University.

    Google Scholar 

  45. Honig, B., and Nicholls, A. (1995), Science, 268:1144.

    Article  CAS  Google Scholar 

  46. Devis, M.E., and McCammon, J.A. (1990), Chem. Rev., 90:509.

    Article  Google Scholar 

  47. Rashin, A.A. (1990), J. Phys. Chem., 94:1725.

    Article  CAS  Google Scholar 

  48. Cancés, E., and Mennucci, B. (1998), J. Math. Chem., 23:309.

    Article  Google Scholar 

  49. Böttcher, C.J.F., and Bordewijk, P. Theory of Electric Polarization. Elsevier, Amsterdam, 1973.

    Google Scholar 

  50. Besler, B.H., Merz, K.M., and Kollman, P.A. (1990), J. Comp. Chem., 11:431.

    Article  CAS  Google Scholar 

  51. Thole, B.T. (1981), Chem. Phys., 59:341.

    Article  CAS  Google Scholar 

  52. di Matteo, A., and Ferrarini, A. (2002), J. Chem. Phys., 117 :2397.

    Article  Google Scholar 

  53. Emsley, J.W., Hashim, R., Luckhurst, G.R., and Shiistone, G.N. (1986), Liquid Crystals, 1:437.

    Article  CAS  Google Scholar 

  54. Emsley, J.W., Heeks, S.K., Horne, T.J., Howells, M.H., Moon, A., Palke, W.E., Patel, S.U., Shilstone, G.N., and Smith, A. (1991), Liquid Crystals, 9:649.

    Article  CAS  Google Scholar 

  55. Tarroni, R., and Zannoni, C. (1996), J. Phys. Chem., 100:17157.

    Article  CAS  Google Scholar 

  56. Sluckin, T.J., and Shuckla, P. (1983), J. Phys. A, 16:1539.

    Article  CAS  Google Scholar 

  57. Singh, S. (1996), Phys. Rep., 277:283.

    Article  CAS  Google Scholar 

  58. Velasco, E., and Mederos, L. (1998), J. Chem. Phys., 109 :2361.

    Article  CAS  Google Scholar 

  59. Hansen, J.P., and McDonald, I.R. Theory of Simple Liquids. Academic Press, London, 1986.

    Google Scholar 

  60. Carnahan, N.F., and Starling, K.E. (1969), J. Chem. Phys., 51 :635.

    Article  CAS  Google Scholar 

  61. Bonuso, S., Visentin, C., Ferrarini, A., and Moro, G.J. (2003, manuscript in preparation).

    Google Scholar 

  62. Jackson, J.D. Classical Electrodynamics. Wiley, New York, 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ferrarini, A., Moro, G.J. (2003). Molecular Models of Orientational Order. In: Burnell, E.E., de Lange, C.A. (eds) NMR of Ordered Liquids. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0221-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0221-8_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6305-2

  • Online ISBN: 978-94-017-0221-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics