Skip to main content

Some Problems in the Theory of Integral and Differential Equations of Fractional Order

  • Chapter
Factorization, Singular Operators and Related Problems
  • 306 Accesses

Abstract

The paper is devoted to some aspects of the so-called integral and differential equations of fractional order in which an unknown function is contained under the operation of integration and differentiation of fractional order. Unified methods based on the Laplace transform, operational calculus and compositional relations are presented to study such linear integral and differential equations. Problems and new trends of research are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Bassam, M. A. and Luchko, Yu. F., On generalized fractional calculus and its application to the solution of integro-differential equations, J. Fract. Calc., 7 (1995), 69–88.

    MathSciNet  MATH  Google Scholar 

  2. Alonso, J., On differential equations of fractional order, Diss. Abstrs., 26 (1964), no. 4, 947.

    Google Scholar 

  3. Bonilla, B., Kilbas, A. A., Rivero, M., Rodriguez, L., and Trujillo, J. J., Modified Bessel-type function and solution of differential and integral equations, Indian J. Pure Appl. Math., 31 (2000), no. 1, 93–109.

    MathSciNet  MATH  Google Scholar 

  4. Campos, L. M. B. C., On the solution of some simple fractional differential equations, Internat. J. Math. Math. Sci., 13 (1990), no. 3, 481–496.

    Article  MathSciNet  MATH  Google Scholar 

  5. Dimovski, I. H., Operational calculus for a class of differential operators, C.R. Acad. Bulgar. Sci., 19 (1966), no. 12, 1111–1114.

    MathSciNet  Google Scholar 

  6. Ditkin, V. A., The theory of operator calculus, Dokl. Akad. Nauk SSSR (N.S), 116 (1) (1957), 15–17 (in Russian).

    MathSciNet  MATH  Google Scholar 

  7. Ditkin, V. A. and Prudnikov, A. P., On the theory of operational calculus stemming from the Bessel equation, USSR Comput. Math. Math. Phys., 3 (1963), 296–315.

    Article  MathSciNet  MATH  Google Scholar 

  8. Ditkin, V. A. and Prudnikov, A. P., Integral Transforms and Operational Calculus. Pergamon Press, Oxford, 1965.

    MATH  Google Scholar 

  9. Dzhrbashyan, M. M., Harmonic Analysis and Boundary Value Problems in the Complex Domain, Operator Theory: Advances and Applications, 65. Birkhäuser Verlag, Basel, 1993.

    Google Scholar 

  10. Elizarraraz, D. and Verde-Star, L., Fractional divided differences and the solution of differential equations of fractional order, Adv. in Appl. Math., 24 (2000), no. 3, 260–283.

    Article  MathSciNet  MATH  Google Scholar 

  11. Erdelyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F. G., Higher Transcendental Functions. McGraw-Hill, New York, Toronto, London, 1953 (Vol. I), 1954 ( Vol. II ), 1955 (Vol. III ).

    Google Scholar 

  12. Fujiwara, M., On the integration and differentiation of an arbitrary order, Tôhoku Math. J., 37 (1933), 110–121.

    Google Scholar 

  13. Gorenflo, R. and Luchko, Yu. F., Operational method for solving generalized Abel integral equations of second kind, Integral Transform. Spec. Funct., 5 (1997), no. 1–2, 47–58.

    Article  MathSciNet  MATH  Google Scholar 

  14. Gorenflo, R., Luchko, Yu. F., and Srivastava, H. M., Operational method for solving integral equations with Gauss hypergeometric function as a kernel, Int. J. Math. Stat. Sci., 6 (1997), no. 2, 179–200.

    MathSciNet  MATH  Google Scholar 

  15. Gorenflo, R. and Mainardi, F., Fractional oscillations and Mittag-Leffier functions, Fachbereich Math. and Inf., Freie Univ. Berlin, A14 (1996), 1–22.

    Google Scholar 

  16. Gorenflo, R. and Mainardi, F., Fractional calculus arid stable probability distributions. In: Fourth Meeting on Current Ideas in Mechanics and Related Fields (Krakow, 1997), Arc. Mech. (Arch. Mech. Stos.), 50, no. 3, 377–388, 1998.

    Google Scholar 

  17. Gorenflo, R. and Vessela, S., Abel Integral Equations. Analysis and Applications, Lecture Notes in Mathematics, 1461. Springer-Verlag, Berlin, 1991.

    Google Scholar 

  18. Hadid, S. B. and Luchko, Yu. F., An operational method for solving fractional differential equations of an arbitrary real order, Panamer. Math. J., 6 (1996), no. 1, 57–73.

    MathSciNet  MATH  Google Scholar 

  19. Hille, E. and Tamarkin, J. D., On the theory of linear integral equations, Ann. Math., 31 (1930), 479–528.

    Article  MathSciNet  MATH  Google Scholar 

  20. Karapetyants, N. K., Kilbas, A. A., and Saigo, M., On the solution of nonlinear Volterra convolution equation with power nonlinearity, J. Integral Equations Appl., 8 (1996), no. 4, 429–445.

    Article  MathSciNet  MATH  Google Scholar 

  21. Karapetyants, N. K., Kilbas, A. A., Saigo, M., and Samko, S. G., Upper and lower bounds for solution of nonlinear Volterra convolution equation with power nonlinearity, J. Integral Equations Appl., 12 (2000), no. 4, 421–448.

    Article  MathSciNet  MATH  Google Scholar 

  22. Kilbas, A. A., Bonilla, B., Rodriguez, J., Trujillo, J. J., and Rivero, M., Compositions of fractional integrals and derivatives with a Bessel-type function and the solution of differential and integral equations, Dokl. Nats. Akad. Nauk Belarusi, 42 (1998), no. 2, 25–29 (in Russian).

    MathSciNet  MATH  Google Scholar 

  23. Kilbas, A. A. and Saigo, M., On solution of integral equation of Abel-Volterra type, Differential Integral Equations, 8 (1995), no. 5, 993–1011.

    MathSciNet  MATH  Google Scholar 

  24. Kilbas, A. A. and Saigo, M., On Mittag-Leffier type function, fractional calculus operators and solutions of integral equations, Integral Transform. Spec. Funct., 4 (1996), no. 4, 355–370.

    Article  MathSciNet  MATH  Google Scholar 

  25. Kilbas, A. A. and Saigo, M., Solution in closed form of a class of linear differential equations of fractional order, Differential Equations, 33 (1997), no. 2, 194–204.

    MathSciNet  MATH  Google Scholar 

  26. Kilbas, A. A. and Saigo, M., On solution of a nonlinear Abel-Volterra integral equation, J. Math. Anal. Appl., 229 (1999), no. 1, 41–60.

    Article  MathSciNet  MATH  Google Scholar 

  27. Kilbas, A. A. and Trujillo, J. J., Differential equations of fractional order: methods, results and problems, I, Applicable Analysis, 78 (2001), no. 1–2, 153–192.

    Article  MathSciNet  MATH  Google Scholar 

  28. Leskovskii, I. P., On the solution of the linear homogeneous differential equations with fractional derivatives and constant coefficients. In: Some Questions of Diff. Equat. in the Solution of Appl. Problems, 85–88. Tul’sk Politechn. Inst., Tula, 1980.

    Google Scholar 

  29. Luchko, Yu. F., Operational method in fractional calculus, Frac. Cale. Appl. Anal., 4 (1999), no. 2, 463–488.

    Google Scholar 

  30. Luchko, Yu. F. and Gorenflo, R., An operational method for solving fractional differential equations with the Caputo derivatives, Acta Math. Vietnam, 24 (1999), no. 2, 207–233.

    MathSciNet  MATH  Google Scholar 

  31. Luchko, Yu. F. and Srivastava, H. M., The exact solution of certain differential equations of fractional order by using operational calculus, Comput. Math. Appl., 29 (1995), no. 8, 73–85.

    Article  MathSciNet  MATH  Google Scholar 

  32. Luchko, Yu. F. and Yakubovich, S. B., Operational calculus for the generalized fractional differential operator and applications, Math. Balkanica (N.S.), 7 (1993), no. 2, 119–130.

    MathSciNet  MATH  Google Scholar 

  33. Luchko, Yu. F. and Yakubovich, S. B., An operational method for solving some classes of integro-differential equations, Differential Equations, 30 (1994), no. 2, 247–256.

    MathSciNet  Google Scholar 

  34. Maravall, D., Linear differential equations of non-integer order and fractional oscilations, Rev. Ac. Ci. Madrid, 65 (1971), 245–258 (in Spanish).

    MATH  Google Scholar 

  35. Meller, N. A., Some aplications of operational calculus to problems of analysis, J. Vychisl. Mat. i Mat. Fiz., 3 (1963), no. 1, 71–78 (in Russian).

    MathSciNet  Google Scholar 

  36. Mikusinski, J., Operational Calculus. Pergamon Press, New York, 1959.

    MATH  Google Scholar 

  37. Miller, K. S. and Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley and Sons, New York, 1993.

    MATH  Google Scholar 

  38. Oldham, K. B. and Spanier, J., The Fractional Calculus. Academic Press, New York, London, 1974.

    Google Scholar 

  39. Podlubny, I., Fractional Differential Equations, Mathematics in Sciences and Engineering, 198. Academic Press, San-Diego, CA, 1999.

    Google Scholar 

  40. Rodriguez, J., Operational calculus for the generalized Bessel operator, Serdica, 15 (1989), no. 3, 179–186.

    MathSciNet  MATH  Google Scholar 

  41. Rodriguez, J., Trujillo, J. J., and Rivero, M., Operational fractional calculus of Kratzel integral transformation. In: Differential equations (Xanthi, 1987), Lecture Notes in Pure and Appl. Math., 118, 613–620. Dekker, New York, 1989.

    Google Scholar 

  42. Saigo, M. and Kilbas, A. A., On Mittag-Leffler type function and applications, Integral Transform. Spec. Funct., 7 (1998), no. 1–2, 97–112.

    Article  MathSciNet  MATH  Google Scholar 

  43. Saigo, M. and Kilbas, A. A., Solution of a class of linear differential equations in terms of Mittag-Leffler type functions, Differential Equations, 36 (2000), no. 2, 193–200.

    Article  MathSciNet  MATH  Google Scholar 

  44. Samko, S. G., Kilbas, A. A., and Marichev, O. I., Fractional Integrals and Derivatives. Theory and Applications. Gordon and Breach Science Publishers, Yverdon, 1993.

    MATH  Google Scholar 

  45. Seitkazieva, D., Integro-differential equations with a kernel that has a weak singularity. In: Studies in integro-differential equations,13, 132–135. Ilim, Frunze, (in Russian).

    Google Scholar 

  46. Wiener, K., On solutions of a differential equation of nonintegral order that occurs in the theory of polarography, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reiche, 32 (1983), no. 1, 41–46 (in German).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

To Professor G. S. Litvinchuk on the occasion of his 70th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kilbas, A.A. (2003). Some Problems in the Theory of Integral and Differential Equations of Fractional Order. In: Samko, S., Lebre, A., dos Santos, A.F. (eds) Factorization, Singular Operators and Related Problems. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0227-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0227-0_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6333-5

  • Online ISBN: 978-94-017-0227-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics