Skip to main content

Gene Therapy for Genetic Disease and Cancer

  • Chapter
Animal Cell Technology: Basic & Applied Aspects

Part of the book series: Animal Cell Technology: Basic & Applied Aspects ((ANICELLTECH,volume 12))

  • 240 Accesses

Abstract

Numerous strategies have been developed for the application of gene transfer techniques to the treatment of human genetic and neoplastic diseases. Strategies for genetic therapy of cancer have included those which aim to provide improved antitumor immunity, provide improved chemotherapy (either by prodrug activation or by protection of drug-sensitive normal tissues to the toxic side effects of cancer chemotherapy), inhibit angiogenesis, and/or restore disrupted growth regulatory function. As a chemoprotective approach, we have been using a transgenic mouse model system to study the expression of drug-resistant forms of dihydrofolate reductase (DHFR) as a means of protecting against the toxic side-effects of antifolate chemotherapy. Antifolate administration may also be applied for the purpose of selectively expanding cells which express drug-resistant DHFR, thus increasing the representation of cells expressing any therapeutic gene co-introduced along with the selectable DHFR gene.

One of the challenges to be faced in the treatment of genetic diseases is in the access of more occluded tissues for introduction of new, potentially therapeutic sequences. We have found that adeno-associated virus vectors are particularly effective in mediating gene transfer and expression in cerebellar Purkinje cells after stereotactic injection either into the cerebellar cortex or into the deep cerebellar nuclei. Current research is focused on the use of antisense and ribozyme approaches for down-regulation of ataxin expression, first in cultured cells and then in a transgenic mouse model of spinocerebellar ataxia type 1.

For many therapeutic applications of gene transfer, an effective outcome will require sustained expression of newly introduced sequences. Stable integration into the host cell genome, for example by using retroviral vectors, ensures the maintenance of newly-introduced sequences in the target cell population. In order to provide integrating function, we are testing the use of a vertebrate transposon, Sleeping Beauty (SB), reconstructed from isolated fish sequences. Current research is focused on utilizing the SB transposase for in vivo integration of engineered transposons introduced into animal tissues using non-viral and viral methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albelda SM, Wiewrodt R, Zuckerman JB. 2000. Annals of Internal Medicine 132: 649 – 60

    Article  PubMed  CAS  Google Scholar 

  2. Allay JA, Persons DA, Galipeau J, Riberdy JM, Ashmun RA, et al. 1998. Nature Medicine 4: 1136 – 43

    Article  PubMed  CAS  Google Scholar 

  3. Belur L, Boelk-Galvan D, Diers MD, Mclvor RS, Zimmerman CL. 2001. Cancer Research 61: 1522 – 26

    PubMed  CAS  Google Scholar 

  4. Blaese RM, Culver KW, Miller AD, Carter CS, Fleisher T, et al. 1995. Science 270: 475 – 80

    Article  PubMed  CAS  Google Scholar 

  5. Bordignon C, Notarangelo LD, Nobili N, Ferrari G, Casorati G, et al. 1995. Science 270: 470 – 5

    Article  PubMed  CAS  Google Scholar 

  6. Burright EN, Clark HB, Servadio A, Matilla T, Feddersen RM, et al. 1995. Cell 82: 937 – 48

    Article  PubMed  CAS  Google Scholar 

  7. Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, Gross F, Yvon E, et al. 2000. Science 288: 669 – 72

    Google Scholar 

  8. Ivies Z, Hackett PB, Plasterk RH, Izsvak Z. 1997. Cell 91: 501 – 10

    Article  Google Scholar 

  9. James RI, May C, Vagt MD, Studebaker R, Mclvor RS. 1997. Experimental Hematology 25: 1286 – 95

    PubMed  CAS  Google Scholar 

  10. James RI, Warlick CA, Diers MD, Gunther R, Mclvor RS. 2000. Blood 96: 1334 – 41

    PubMed  CAS  Google Scholar 

  11. Kaemmerer WF, Reddy RG, Warlick CA, Hartung SD, et al. 2000. Molecular Therapy 2: 446 – 57

    Article  PubMed  CAS  Google Scholar 

  12. Kay MA, Manno CS, Ragni MV, Larson PI, Couto LB, et al. 2000. Nature Genetics 24: 257 – 61

    Article  PubMed  CAS  Google Scholar 

  13. Kohn DB, Weinberg KI, Nolta JA, Heiss LN, Lenarsky C, et al. 1995. Nature Medicine 1: 1017 – 23

    Article  PubMed  CAS  Google Scholar 

  14. May C, Gunther R, Mclvor RS. 1995. Blood 86: 2439 – 48

    PubMed  CAS  Google Scholar 

  15. May C, James RI, Gunther R, Mclvor RS. 1996. J. Pharmacol. Exptl Therapeutics 278: 1444 – 51

    CAS  Google Scholar 

  16. Mclvor RS. 1996. Bone Marrow Transplantation 18: S50 – 4

    Google Scholar 

  17. Mclvor RS. 1999. Pediatric Transplantation 3: 116 – 21

    Article  Google Scholar 

  18. Mclvor RS, Weigel B, Gunther R, Diers MD, Frandsen J. 2000. Molecular Therapy 1: S166

    Google Scholar 

  19. Morris JA, May C, Kim HS, Ismail R, Wagner JE, et al. 1996. Transgenics 2: 53 – 67

    CAS  Google Scholar 

  20. Muzyczka N. 1992. Current Topics in Microbiology & Immunology 158: 97 – 129

    Article  CAS  Google Scholar 

  21. On HT, Chung MY, Banfi S, Kwiatkowski TJ, Jr., Servadio A, et al. 1993. Nature Genetics 4: 221 – 6

    Article  Google Scholar 

  22. Yant SR, Meuse L, Chiu W, Ivies Z, Izsvak Z, Kay MA. 2000. Nature Genetics 25: 35 – 41

    Article  PubMed  CAS  Google Scholar 

  23. Zhao RC, Mclvor RS, Griffin JD, Verfaillie CM. 1997. Blood 90: 4687 – 98

    PubMed  CAS  Google Scholar 

  24. Zoghbi HY, On HT. 1995. Seminars in Cell Biology 6: 29 – 35

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

McIvor, R.S. (2002). Gene Therapy for Genetic Disease and Cancer. In: Shirahata, S., Teruya, K., Katakura, Y. (eds) Animal Cell Technology: Basic & Applied Aspects. Animal Cell Technology: Basic & Applied Aspects, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0728-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0728-2_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5934-5

  • Online ISBN: 978-94-017-0728-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics