Skip to main content

Brassinosteroids: A Regulator of 21st Century

  • Chapter
Brassinosteroids

Abstract

Brassinosteroids (BRs) were initially assigned a position of a lesser importance than the other recognized plant growth regulators. Over the last 25 years, they have evolved as essential, full flashed regulators of growth and development. Much progress has been achieved in their isolation, characterization and possible mechanism of action. However, their practical applicability has lacked fear behind. The literature available suggests strong potential of steroidal activity in this new generation of growth regulators in improving the biological yield of important plants. Therefore, in this chapter we have explored the importance of BRs in regulating enzyme level, photosynthesis and related aspects determining biological yield under normal and stressed conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmad, A., Hayat, S. (2003). 28-homobrassinolide improved growth and yield in mustard. 2nd International Congress of Plant Physiology, New Delhi, India, pp. 520.

    Google Scholar 

  • Altmann, T. (1999). Molecular physiology of brassinosteroids revealed by the analysis of mutants. Planta 208: 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Anuradha, S., Rao, S.S.R. (2002). Effect of brassinosteroids on salinity stress induced inhibition of seed germination and seedling growth of rice (Oryza sativa). Plant Growth Regulation 33 (2): 151–153.

    Article  Google Scholar 

  • Arteca, R.N. (1997). Plant growth Substances: Principles and Application. CBS Publishers and Distributors, New Delhi, India.

    Google Scholar 

  • Arteca, R.N., Bachman, J.M., Mandava, N.B. (1988). Effect of indole-3-acetic acid and brassinosteroid on ethylene biosynthesis in etiolated mung bean hypocotyl segments. Journal of Plant Physiology 133: 430–435.

    Article  CAS  Google Scholar 

  • Arteca, R.N., Tsai, D.S., Schlagnhaufer, C., Mandava, N.B. (1983). The effect of brassinosteroid on auxin-induced ethylene production by etiolated mung bean segments. Physiologia Plantarum 59: 539–544.

    Article  CAS  Google Scholar 

  • Badger, M.R., Price, G.D. (1994). The role of carbonic anhydrase in photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 45: 369–392.

    Article  CAS  Google Scholar 

  • Bellincampi, D., Morpurgo, G. (1988). Stimulation of growth in Daucus carota L. cell cultures by brassinosteroids. Plant Science 54: 153–156.

    Article  CAS  Google Scholar 

  • Bhatia, D.S., Kaur, J. (1997). Effect of homobrassinolide and humicil on chlorophyll content, Hill activity and yield components in mungbean (Vigna radiata L. Wilczek) Phytomorphology 47: 421–426.

    Google Scholar 

  • Braun, P., Wild, A. (1984). The influence of brassinosteroid on growth and parameters of photosynthesis of wheat and mustard plants. Journal of Plant Physiology 116: 189–196.

    Article  PubMed  CAS  Google Scholar 

  • Cao, H., Chen, S. (1995). Brassinosteroid-induced rice lamina joint inclination and its relation to indole-3-acetic acid and ethylene. Plant Growth Regulation 16: 189–196.

    Article  CAS  Google Scholar 

  • Catterou, M., Dubois, F., Schaller, H., Aubanelle, L., Vilcot, B., Sangwan-Norreel, B.S.,Sangwan, R.S. (2001a). Brassinosteroids, microtubules and cell elongation in Arabidopsis thaliana. I. Molecular, cellular and physiological characterization of the Arabidopsis bul1 mutant, defective in the 117-sterol-C5-desaturation step leading to brassinosteroid biosynthesis. Planta 212: 659–672.

    CAS  Google Scholar 

  • Catterou, M., Dubois, F., Schaller, H., Aubanelle, L., Vilcot, B., Sangwan-Norreel, B.S.,Sangwan, R.S. (2001b). Brassinosteroids, microtubules and cell elongation in Arabidopsis thaliana. II. Effects of brassinosteroids on microtubules and cell elongation in bul1 mutant. Planta 212: 673–683.

    CAS  Google Scholar 

  • Chang, J.Q., Cai, D.T. (1988). The effects of brassinolide on seed germination and cotyledons tissue culture in Brassica napus L. Oil Crops China 18–22.

    Google Scholar 

  • Choe, S., Dilkes, B.P., Gregory, B.D., Ross, A.S., Yuan, H., Noguchi, T., Fujioka, S., Takatsuto, S., Tanaka, A., Yoshida, S., Tax, F.E., Feldmann, K.A. (1999a). The Arabidopsis dwarf1 mutant is defective in the conversion of 24-methylenecholesterol to campesterol in brasisnosteroid biosynthesis. Plant Physiology 119: 897–907.

    Article  PubMed  CAS  Google Scholar 

  • Choe, S., Noguchi, T., Fujioka, S., Takatsuto, S., Tissier, C.P., Gregory, B.D., Ross, A.S., Tanaka, A., Yoshida, S., Tax, F.E., Feldmann, K.A. 1999b. The Arabidopsis dwf7/ste1 mutant is defective in the 117-sterol C-5 desaturation step leading to brassinosteroid biosynthesis. Plant Cell 11: 207–221.

    PubMed  CAS  Google Scholar 

  • Churikova, V.V., Vladimirova, I.N. (1997). Effect of epin on activity of oxidative metaboilsm of cucumber in peronosporous epiphytotia conditions. In “Plant growth and development regulators” 4th pp. 78. Moscow.

    Google Scholar 

  • Clouse, S.D. (1996). Molecular genetic studies confirm role of brassinosteroids in plant growth and development in Arabidopsis. Plant Cell 3: 445–459.

    Google Scholar 

  • Clouse, S.D., Hall, A.F., Langford, M., McMorris, T.C., Baker, M.E. (1993). Physiological and molecular effects of brassinosteroids on Arabidopsis thaliana. Journal of Plant Growth Regulation 12: 61–66.

    Article  CAS  Google Scholar 

  • Clouse, S.D., Langford, M., McMorris, T.C. (1996). A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiology 111: 671–678.

    Article  PubMed  CAS  Google Scholar 

  • Clouse, S.D., Zurek, D.M., McMorris, T.C., Baker, M.E. (1992). Effect of brassinolide on gene expression in elongating soybean epicotyls. Plant Physiology 100: 1377–1383.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, J.D., Meudt, W.J. (1983). Investigations on the mechanism of the brassinosteroid response. I. Indole-3-acetic acid metabolism and transport. Plant Physiology 72: 691–694.

    Article  PubMed  CAS  Google Scholar 

  • Ding, J.X., Ma, G.R., Huang, S.Q., Ye, M.Z. (1995). Studies on physiological effects of epibrassinolide on cucumber (Cucumis sativus L.). Journal of Zhojiang Agricultural University 21: 615–621.

    Google Scholar 

  • Diz, G.S., Perez, N., Nunez, M., Torres, W. (1995). Effects of the synthetic brassinosteroid DAA-6 on tobacco (Nicotiana tabacum L.). Cultivos Tropicales 16: 53–55.

    Google Scholar 

  • Dong, J.W., Lou, S.S., Han, B.W., He, Z.P., Li, P.M. (1989). Effects of brassinolide on rice seed germination and seedling growth. Acta Agriculturae University Pekinensis 15: 153–156.

    Google Scholar 

  • Fariduddin, Q. (2002). The response of Vigna radiata and Brassica juncea to 28-homobrassinolide and kinetin. Ph.D. thesis, Aligarh Muslim University, Aligarh, India.

    Google Scholar 

  • Fariduddin, Q., Ahmad, A., Hayat, S. (2003). Photosynthetic response of Vigna radiata to presowing seed treatment with 28-homobrassinolide. Photosynthetica 41(2): xxx-xxx.

    Google Scholar 

  • Fariduddin, Q., Ahmad, A., Hayat, S., Alvi, S. (2000). The response of chickpea, raised from the seeds pretreated with 28-homobrassinolide. In: National seminar on plant physiological paradigm for fostering agro and biotechnology and augmenting environmental productivity in millennium 2000, Lucknow, India pp. 134.

    Google Scholar 

  • Fujii, S., Hirai, K., Saka, H. (1991). Growth regulating action of brassinolide in rice plants. In: Brassinosteroids: Chemistry, Bioactivity and Applications, pp 306–311. Eds. H G Cutler, T Yokota and G Adam. American Chemical Society, Washington.

    Google Scholar 

  • Grove, M.D., Spencer, G.F., Rohwedder, W.K., Mandava, N., Worley, J.F., Warthen, J.D., Jr., Steffens, G.L., Flippen-Anderson, J.L., Cook, J.C. Jr. (1979). Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature 281: 216–217.

    Article  CAS  Google Scholar 

  • Hayat, S., Ahmad, A. (2003). Soaking seeds of Lens culinaris with 28-homobrassinolide increased nitrate reductase activity and grain yield in the field in India. Annals of Applied Biology 143: 121–124.

    Article  CAS  Google Scholar 

  • Hayat, S., Fariduddin, Q., Ahmad, A. (2003). Homobrassinolide affect germination and 11-amylase activity in wheat seeds. Seed Technology 25 (1): 45–49.

    Google Scholar 

  • Hayat, S., Ahmad, A., Mobin, M., Fariduddin, Q., Azam, Z.M. (2001a). Carbonic anhydrase, photosynthesis and seed yield in mustard plants treated with phytohormones. Photosynthetica 39: 27–30.

    Article  Google Scholar 

  • Hayat, S., Ahmad, A., Hussain, A., Mobin, M. (200 1b). Growth of wheat seedlings raised from the grains treated with 28-homobrassinolide. Acta Physiologiae Plantarum 23: 27–30.

    Google Scholar 

  • Hayat, S., Ahmad, A., Mobin, M., Hussain, A., Fariduddin, Q. (2000). Photosynthetic rate, growth and yield of mustard plants sprayed with 28-homobrassinolide. Photosynthetica 38: 469–471.

    Article  CAS  Google Scholar 

  • He, R.Y., Wang, G.J., Wang, X.S. (1991). Effect of brassinolide on growth and chilling resistance of maize seedlings. In: Brassinosteroids: Chemistry, Bioactivity and Applications, pp 26–35. Eds. H G Cutler, T Yokota and G Adam. American Chemical Society, Washington.

    Google Scholar 

  • He, Y-J., Xu, R-J, Zhao, Y-J. (1996). Enhancement of senescence by epibrassinolide in leaves of mungbean seedling. Acta Physiologia Sin 22: 58–62.

    CAS  Google Scholar 

  • Helmy, Y.I., Sawan, O.M.M., Abdel-Halim, S.M. (1997). Growth, yield and endogenous hormones of broad bean plants as affected by brassinosteroids. Egyptian Journal of Horticulture 24: 109–115.

    CAS  Google Scholar 

  • Hunter, W.J. (2001). Influence of root applied epibrassinolide and carbenoxolone on the nodulation and growth of soybean (Glycine max L.) seedlings. Journal of Agronomy and Crop Science 186: 217–222.

    Article  CAS  Google Scholar 

  • Ikekawa, N., Zhao, Y.J. (1991). Application of 24-epibrassinolide in agriculture. In: Brassinosteroids: Chemistry, Bioactivity and Applications, pp 280–291. Eds. H G Cutler, T Yokota and G Adam. American Chemical Society, Washington.

    Google Scholar 

  • Iwasaki, T., Shibaoka, H. (1991). Brassinosteroids as regulators of tracheary-element differentiation in isolated Zinnia mesophyll cells. Plant Cell Physiology 32: 1007–10014.

    CAS  Google Scholar 

  • Jones-Held, S.,Van Doren,M., Lockwood, T. (1996). Brassinolide application to Lepidium sativum seeds and the effects on seedling growth. Journal of Plant Growth Regulation 15: 63–67.

    Article  Google Scholar 

  • Kamuro, Y., Inada, K. (1991). The effect of brassinolide on the light-induced growth inhibition in mungbean epicotyl. Plant Growth Regulation 10: 37–43.

    Article  CAS  Google Scholar 

  • Kamuro, Y., Takatsuto, S. (1991). Capability for and problems of practical uses of brassinosteroids. In: Brassinosteroids: Chemistry, Bioactivity and Applications, pp 292–297. Eds. H G Cutler, T Yokota and G Adam. American Chemical Society, Washington.

    Google Scholar 

  • Kamuro, Y., Takatsuto, S. (1999). Potential application of brassinosteroids in agricultural fields. In: Brassinosteroids: Steroidal Plant Hormones, pp 223–241. Eds. A Sakurai, T Yokota and S D Clouse, Springer-Verlag, Tokyo.

    Google Scholar 

  • Katsumi, M. (1985). Interaction of a brassinosteroid with IAA and GA3 in the elongation of cucumber hypocotyl sections. Plant Cell Physiology 26: 615–625.

    CAS  Google Scholar 

  • Katsumi, M. (1991). Physiological mode of brassinolide action in cucumber hypocotyl growth. In: Brassinosteroids: Chemistry, Bioactivity and Applications, pp 246–254. Eds. H G Cutler, T Yokota and G Adam. American Chemical Society, Washington.

    Google Scholar 

  • Kauschmann, A., Jessop, A., Koncz, C., Szekeres, M., Willmitzer, L., Altmann, T. (1996). Genetic evidence for an essential role of brassinosteroids in plant development. Plant Journal 9: 701–713.

    Article  CAS  Google Scholar 

  • Khripach, V.A., Zhabinskii, V.N., Malevannaya, N.N. (1997). Recent advances in brassinosteroids study and application. Proceeding of Plant Growth Regulation Society of America 24: 101–106.

    Google Scholar 

  • Kulaeva, O.N., Burkhanova, E.A., Fedina, A.B., Khokhlova, V.A., Bokebayeva, G.A., Vorbrodt, H.M., Adam, G. (1991). Effect of brassinosteroids on protein synthesis and plant cell ultrastructure under stress conditions.In: Brassinosteroids: Chemistry, Bioactivity and Applications, pp 141–155. Eds. H G Cutler, T Yokota and G Adam. American Chemical Society, Washington.

    Book  Google Scholar 

  • Lawlor, D.W. (1987). The chemistry of photosynthesis. In: Photosynthesis. Metabolism, Control and Physiology, pp. 127–157. Eds. D W Lawlor Longman Singapore Publishers, Singapore.

    Google Scholar 

  • Leubner-Metzger, G. (2001). Brassinosteroids and gibberellins promote tobacco seed germination by distinct pathways. Planta 213 (3): 758–763.

    Article  PubMed  CAS  Google Scholar 

  • Li, J., Nagpal, P., Vitart, V., Chory, J., McMorris, T.C. (1996). A role of brassinosteroids in light-dependent development of Arabidopsis. Science 272: 398–401.

    Article  PubMed  CAS  Google Scholar 

  • Liang, G.J., Li, Y.Y., Shao, L. (1998). Effect of DA-6 and BR+GA3 on growth and photosynthetic rate in spinach. Acta Horticulturae Sinica 25: 356–360.

    Google Scholar 

  • Maeds, E. (1965). Rate of lamina inclination in excised rice leaves. Physiologia Plantarum 18: 813–827.

    Article  Google Scholar 

  • Mai, Y., Lin, S., Zeng, X., Ran, R. (1989). Effect of brassinolide on nitrate reductase activity in rice seedlings. Plant Physiology Communication 2: 50–52.

    Google Scholar 

  • Mandava, N.B. (1988). Plant Growth-Promoting Brassinosteroids. Annual Review of Plant Physiology and Plant Molecular Biology 39: 23–52.

    Article  CAS  Google Scholar 

  • Mandava, N.B., Sasse, J.M., Yopp, J.H. (1981). Brassinolide, a growth promoting steroidal lactone. II. Activity in selected gibberellin and cytokinin bioassays. Physiologia Plantarum 53: 453–461.

    Google Scholar 

  • Meudt, W.J., (1987). Investigations on the mechanism of the brassinosteroid response. VI. Effect of brassinolide on gravitropism of bean hypocotyls. Plant Physiology 83: 195–198.

    Google Scholar 

  • Meudt, W.J., Thompson, M.J., Bennet, H.W. (1983). Investigations on the mechanism of the brassinosteroid response.III. Techniques for potential enhancement of crop production. Proceeding of Plant Growth Regulation Society of america 10: 312–318.

    Google Scholar 

  • Meudt, W.J., Thompson, M.J., Mandava, N.B., Worley, J.F. (1984). Method for promoting plant growth. Canadian Patent No. 1173659. Pp. 11.Assigned to USA.

    Google Scholar 

  • Nakajima, N., Shida, A., Toyama, S. (1996). Effects of brassinosteroid on cell division and colony formation of chinese cabbage mesophyll protoplasts. Japanese Journal of Crop Science 65: 125–130.

    Google Scholar 

  • Nakajima, N., Toyama, S. (1995). Study on brassinosteroid-enhanced sugar accumulation in cucumber epicotyls. Japanese Journal of Crop Science 64: 616–621.

    Article  CAS  Google Scholar 

  • Nunez, M., Torres, W., Echevarria, I. (1996). The effect of a brassinosteroid analogue on growth and metabolic activity of young tomato plants. Cultivos Tropicales 17: 26–30.

    Google Scholar 

  • Oh,Man-OH. (2003). Brassinosteroids accelerate the rate of cell division in isolated petal protoplasts of Petunia hybrida. Journal of Plant Biotechnology 5 (1): 63–67.

    Google Scholar 

  • Oh,Man-OH., Clouse, S.D. (1998). Brassinolide affects the rate of cell division in isolated leaf protoplasts of Petunia hybrida. Plant Cell Reports 17: 921–924.

    Article  Google Scholar 

  • Okabe, K., Yang, S.Y., Tsuzuki, M., Miyachi, S. (1984). Carbonic anhydrase: its content in spinach leaves and its taxonomic diversity studied with anti-spinach leaf carbonic anhydrase antibody. Plant Science Letters 33: 145–153.

    Article  CAS  Google Scholar 

  • Pipattanawong, N., Fujishige, N., Yamane, K., Ogata, R.C. (1996). Effect of brassinosteroid on vegetative and reproductive growth in two day-neutral strawberries. Journal of the Japanese Society for Horticultural Science 65: 651–654.

    Article  CAS  Google Scholar 

  • Raj asekaran, L.R., Blake, T.J. (1998). Early growth invigoration of jack pine seedlings by natural plant growth regulators. Trees 12: 420–423.

    Article  Google Scholar 

  • Raj asekaran, L.R., Blake,T.J. (1999). New plant growth regulators protect photosynthesis and enhance growth under drought of jack pine seedlings. Journal of Plant Growth Regulation 18: 175–181.

    Google Scholar 

  • Ramraj, V.M., Vyas, B.N., Godrej, N.B., Mistry, K.B., swmai, B.N., Singh, N. (1997). Effects of 28-homobrassinolide on yields of wheat, rice, groundnut, mustard, potato and cotton. Journal of Agricultural science 128: 405–413.

    Article  CAS  Google Scholar 

  • Rao, S.S.R., Vardhini, B.V., Sujatha, E., Anuradha, S. (2002). Brassinosteroids- A new class of phytohormones. Current Science 82: 1239–1245.

    Google Scholar 

  • Reed, M.L., Graham, D. (1981). Carbonic anhydrase in plants distribution, properties and possible physiological roles. Phytochemistry 7: 47–94.

    CAS  Google Scholar 

  • Roddick, J.G., Ikekawa, N. (1992). Modificaiton of root and shoot development in monocotyledon and dicotyledon seedlings by 24-epibrassinolide. Journal of Plant Physiology 140: 70–74.

    Article  CAS  Google Scholar 

  • Roddick, J.G., Rijnenberg, A.L., Ikekawa, N. (1993). Developmental effects of 24-epibrassinolide in excised roots of tomato grown in vitro. Physiologia Plantarum 87: 453–458.

    Article  CAS  Google Scholar 

  • Rönsch, H., Adam, G., Matschke, J., Schachler, G. (1993). Influence of (22S, 23S)-homobrassinolide on rooting capacity and survival of adult Norway spruce cuttings. Tree Physiology 12: 71–80.

    Article  PubMed  Google Scholar 

  • Roth, P.S., Batch, T.J., Thompson, M.J. (1989). Brassinosteroids: Potential inhibitors of transformed tobacco callus culture. Plant Science 59: 63–70.

    Google Scholar 

  • Sairam, R.K. (1994). Effects of homobrassinolide application on plant metabolism and grain yield under irrigated and moisture-stress conditions of two wheat varieties. Plant Growth Regulation 14: 173–181.

    Article  CAS  Google Scholar 

  • Sairam, R., Shukla, D., Deshmukh, P. (1996). Effect of homobrassinolide seed treatment on germination, alpha-amylase activity and yield of wheat under moisture stress conditions. Indian Journal of Plant Physiology 1: 141–144.

    CAS  Google Scholar 

  • Sala, C., Sala, F. (1985). Effect of brassinosteroid on cell division and enlargement in cultured carrot (Daucus carota L.) cells. Plant Cell Reports 4: 144–147.

    Article  CAS  Google Scholar 

  • Sasse, J.M. (1990). Brassinolide-induced elongation and auxin. Physiologia Plantarum 80: 401–408.

    Article  CAS  Google Scholar 

  • Sasse, J.M., Smith, R., Hudson, I. (1995). Effect of 24-epibrassinolide on germination of seeds of Eucalyptus camaldulensis in saline conditions.Proceeding of Plant Growth Regulation Society of America 22: 136–141.

    Google Scholar 

  • Schilling,G., Schiller, C., Otto, S. (1991). Influence of brassinosteroids on organ relations and enzyme activities of sugar-beet plants. In: Brassinosteroids: Chemistry, Bioactivity and Applications, pp 208–219. Eds. H G Cutler, T Yokota and G Adam. American Chemical Society, Washington.

    Google Scholar 

  • Schlagnhaufer, C., Arteca, R.N., Yopp, J.H. (1984). Evidence that brassinosteroid stimulates auxin-induced ethylene synthesis in mungbean hypocotyls between S-adenosylmethionine and 1-aminocylopropane-1-carboxylic acid. Physiologia Plantarum 61: 555–558.

    Article  CAS  Google Scholar 

  • Schlagnhaufer, C.D., Arteca, R.N. (1985a). Brassinosteroid induced epinasty in tomato plants. Plant Physiology 78: 300–303.

    Article  PubMed  CAS  Google Scholar 

  • Schlagnhaufer, C.D., Arteca, R.N. (1985b). Inhibition of brassinosteroid induced epinasty in tomato plants by aminooxyacetic acid (AOA) and cobalt (Co2+). Physiologia Plantarum 65: 151–155.

    Article  CAS  Google Scholar 

  • Shen, X.Y., Dai, J.Y., Hu, A.C., Gu, W.L., He, R.Y., Zheng, B. (1990). Studies on physiological effects of brassinolide on drought resistance in maize. Journal of Shenyang Agricultural University 21: 191–195.

    Google Scholar 

  • Soto, F., Tejeda, T., Nunez, M. (1997). Preliminary study on the use of brassinosteroids in coffee trees. Cultivos Tropicales 18: 52–54.

    Google Scholar 

  • Sultemeyer, D., Schmidt, C., Fock, H.P. (1993). Carbonic anhydrase in higher plants and aquatic microorganisms. Physiologia Plantarum 88: 179–190.

    Article  Google Scholar 

  • Takatsuto, S. (1994). Brassinosteroids: distribution in plants, bioassays and microanalysis by gas chromatography-mass spectrometry. Journal of Chromatography 658: 3–15.

    Article  CAS  Google Scholar 

  • Takematsu, T., Takeuchi, Y. (1989). Effects of brassinosteroids on growth and yield of crops. Proceeding of Japan Academy Series B 65: 149–152.

    Article  CAS  Google Scholar 

  • Takeno, K., Pharis, R.P. (1982). Brassinolide-induced bending of lamina of dwarf rice seedlings: an auxin mediated phenomenon. Plant Cell Physiology 23: 1275–1281.

    CAS  Google Scholar 

  • Vardhini, B.V., Rao, S.S.R. (1997). Effect of brassinosteroids on salinity induced growth inhibition of groundnut seedlings. Indian Journal of Plant Physiology 2: 156–157.

    CAS  Google Scholar 

  • Vardhini, B.V., Rao, S.S.R. (1998). Effect of brassinosteroids on growth, metabolite content and yield of Arachis hypogea. Phytochemistry 48: 927–930.

    Article  CAS  Google Scholar 

  • Vardhini, B.V., Rao, S.S.R. (2000). Effect of brassinosteroids on the activities of certain oxidizing and hydrolyzing enzymes of groundnut. Indian Journal of Plant Physiology 5: 89–92.

    CAS  Google Scholar 

  • Wang, S.G. (1997). Influence of brassinosteroid on rice seedling growth. International Rice Research Notes 22: 20–21.

    Google Scholar 

  • Wang, S.G., Deng, R.F. (1992). Effects of brassinosteroid on root metabolism in rice. Journal of Southwest Agricultural University 14: 177–181.

    Google Scholar 

  • Wilen, R.W., Sacco, M., Gusta, L.V., Krishna, P. (1995). Effects of 24-epibrassinolide on freezing and thermotolerance of brome grass (Bromus inermis) cell cultures. Physiologia Plantarum 95: 195–202.

    Article  CAS  Google Scholar 

  • Yokota, T., Takahashi, N. (1986). Chemistry, physiology and agricultural application of brassinolide and related steroids. In: Plant Growth Substances, pp 129–138. Eds. M Bopp, Springer-Verlag, Berlin

    Google Scholar 

  • Yopp, J.H., Mandava, N.B., Sasse, J.M. (1981a). Brassinolide, a growth promoting steroidal lactone. I. Activity in selected auxin bioassays. Physiologia Plantarum 53: 445–452.

    Google Scholar 

  • Yopp, J.H., Mandava, N.B., Thompson, M.J., Sasse, J.M. (1981b). Brassinosteroids in selected bioassays. 8th Proceeding of Plant Growth Regulation Society of America pp 110–126.

    Google Scholar 

  • Zurek, D.M., Rayle, D.L., McMorris, T.C., Clouse, S.D. (1994). Investigation of gene expression, growth kinetics, and wall extensibility during brassinosteroid-regulated stem elongation. Plant Physiology 104: 505–513.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hayat, S., Ahmad, A., Fariduddin, Q. (2003). Brassinosteroids: A Regulator of 21st Century. In: Hayat, S., Ahmad, A. (eds) Brassinosteroids. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0948-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0948-4_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6464-6

  • Online ISBN: 978-94-017-0948-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics