Skip to main content

Abstract

Water deficit is one of the most common environmental limitations of crop productivity by affecting growth through alterations in metabolism and gene expression. The mechanisms involved in drought perception and signal transduction pathways are poorly understood. The participation of the plant hormone abscisic acid (ABA) has been well established. ABA levels increase when there are changes in the environment that result in cellular dehydration. Different approaches have been taken to understanding the molecular responses to desiccation and how ABA regulates gene expression. Recent efforts have identified particular topics of importance in the dissection of the signal transduction pathway which are summarized as follows: physiological approaches: identification of signalling molecules. Genetic approaches: the use of mutants, and Molecular approaches: promoter analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allan AC, Fricker MD, Ward JL, Beale MH and Trewavas AJ (1994) Two transduction pathways mediate rapid effects of abscisic acid in Commelina guard cells. Plant Cell 6: 1319–1328

    PubMed  CAS  Google Scholar 

  • Anderson BE, Ward JM and Schroeder JI (1994) Evidence for an extracellular receptor site for abscisic acid in Commelina guard cells. Plant Physiol 104: 1177–1183

    PubMed  CAS  Google Scholar 

  • Bartels D, Hanke C, Schneider K, Michel D and Salamini F (1992) A desiccation-related Elip-like gene from the resurrection plant is regulated by light and ABA. EMBO J 11: 277]-2778

    Google Scholar 

  • Bianchi G, Gamba A, Murelli C, Salamini F and Bartels D (1991) Novel carbohydrate metabolism in the resurrection plant Craterostigma plantagineum. Plant J 1: 335–359

    Article  Google Scholar 

  • Blatt MR (1990) Potassium channel currents in intact stomatal guard cells. Rapid enhancement by abscisic acid Planta 180: 445–455

    CAS  Google Scholar 

  • Blum A (1988) Plant Breeding for Stress Environments. Boca Raton, FL. CRF Press

    Google Scholar 

  • Bray EA (1993) Molecular responses to water deficit. Plant Physiol 103: 1035–1040

    PubMed  CAS  Google Scholar 

  • Cordero MJ, Raventos D and Segundo BS (1994) Expression of a maize proteinase inhibitor gene is induced in response to wounding and fungal infection: systemic wound-response of a monocot gene. Plant J 6: 141–150

    Article  PubMed  CAS  Google Scholar 

  • Dure L III (1993b) A repeating 11-mer amino acid motif and plant desiccation. Plant J 3: 363–369

    Article  PubMed  CAS  Google Scholar 

  • Gilroy S, Read ND and Trewavas AJ (1990) Elevation of cytoplasmic calcium by caged calcium or caged inositol triphosphate initiates stomata] closure. Nature 346: 769–771

    Article  PubMed  CAS  Google Scholar 

  • Gilroy S and Jones RL (1994) Perception of gibberellin and abscisic acid at the external face of the plasma membrane of barley (Hordeum vulgare L.) aleurone protoplasts. Plant Physiol 104: 1185–1192

    PubMed  CAS  Google Scholar 

  • Giraudat J, Parcy F, Bertauche N, Gosti F, Leung J, Morris PCh, Bouvier-Durand M and Vartanian N (1994) Current advances in abscisic acid action and signalling. Plant Mol Biol 26: 15571577

    Google Scholar 

  • Goday A, Jensen AB, Culianez-Macia FA, Alba MA, Figueras M, Serratosa J, Torrent M and Pages M (1994) The maize abscisic acid-responsive protein Rab 17 is located in the nucleus and interacts with nuclear localization signals. Plant Cell 6: 351360

    Google Scholar 

  • Gomez J, Sanchez-Martinez D, Stiefel V, Rigau J, Puigdomenech P and Pages M (1988) A gene induced by the plant hormone abscisic acid in response to water stress encodes a glycine-rich protein. Nature 334: 262–264

    Article  PubMed  CAS  Google Scholar 

  • Graham JS, Hall G, Pearce G and Ryan CA (1986) Regulation of synthesis of proteinase inhibitors I and II mRNAs in leaves of wounded tomato plants. Planta 169: 399–405

    Article  CAS  Google Scholar 

  • Guiltinan MJ, Marcotte WR and Quatrano RS (1990) A plant leucine zipper protein that recognizes an abscisic acid response element. Science 250: 267–271

    Article  PubMed  CAS  Google Scholar 

  • Hattori T, Vasil V, Rosenkras L, Hannah LC, McCarty DR and Vasil IK (1992) The viviparous-1 gene and abscisic acid activate the Cl regulatory gene for anthocyanin biosynthesis during seed maturation in maize. Genes Development 6: 609–618

    Article  PubMed  CAS  Google Scholar 

  • Henson IE (1984) Effects of atmospheric humidity on abscisic acid accumulation and water status in leaves of rice (Oryza sativa L.). Annu Bot 54: 569–582

    CAS  Google Scholar 

  • Hu C-AA, Izawa T, Foster R and Chua NH (1993) Plant bZIP protein DNA binding specificity. J Mol Biol 230: 1131–1144

    Article  Google Scholar 

  • King RW (1976) Abscisic acid in developing wheat grains and its relationship to grain growth and maturation. Planta 132: 43–51

    Article  CAS  Google Scholar 

  • Kiyosue T, Yamaguchi-Shinozaki K and Shinozaki K (1994) Cloning of cDNAs for genes that are early-responsive to dehydration stress (ERDs) in Arabidopsis thaliana L.: identification of three ERDs as HSP cognate genes. Plant Mol Biol 25: 791–798

    Article  PubMed  CAS  Google Scholar 

  • Kononowicz Ai, Raghothama KG, Casas AM, Watad A-EA, Liu D, Bressan RA and Hasegawa PM (1993) Osmotin: regulation of expression and function. In: Close Ti and Bray EA (eds) Responses to Cellular Dehydration during Environmental Stress. Current Topics in Plant Physiology Vol. 10. American Society of Plant Physiologists, Rockville, MD pp 144–158

    Google Scholar 

  • Leopold AC (1990) Coping with desiccation. In: Alscher RG and Cumming JR (eds) Stress responses in Plants: Adaptation and Acclimation Mechanisms. Wiley-Liss, New York, pp 37–56

    Google Scholar 

  • Li Y and Walton DC (1987) Xanthophylls and abscisic acid biosynthesis in water-stressed bean leaves. Plant Physiol 90: 12711274

    Google Scholar 

  • Marcotte WR, Bayley CC and Quatrano RS (1988) Regulation of a wheat promoter by abscisic acid in rice protoplasts. Nature 335: 454–457

    Article  CAS  Google Scholar 

  • McAinsh MR, Brownlee C and Hetherington AM (1992) Visualizing changes in cytosolic-free Cat+ during the response of stomatal guard cells to abscisic acid. Plant Cell 4: 1113–1122

    PubMed  CAS  Google Scholar 

  • McCarty DR, Hattori T, Carson CB, Vasil V, Lazar M and Vasil IK (1991) The viviparous-I developmental gene of maize encodes a novel transcriptional activator. Cell 66: 895–905

    Article  PubMed  CAS  Google Scholar 

  • Mundy J, Chua N-H (1988) Abscisic acid and water-stress induce the expression of a novel rice gene. EMBO J 7: 2279–2286

    PubMed  CAS  Google Scholar 

  • Mundy J, Yamaguchi-Shinozaki K and Chua NH (1990) Nuclear proteins bind conserved elements in the abscisic acid-responsive promoter of a rice rab gene. Proc Natl Acad Sci USA 87: 14061410

    Google Scholar 

  • Nelson D, Salamini F and Bartels D (1994) Abscisic acid promotes novel DNA-binding activity to a desiccation-related promoter of Craterostigma plantagineum. Plant J. 5: 451–458

    Article  PubMed  CAS  Google Scholar 

  • Nordin K, Heino P and Palva ET (1991) Seperate signal pathways regulate the expression of a low-temperature-induced gene in Arabidopsis thaliana ( L.) Heynh. Plant Mol Biol 16: 1061–1071

    Google Scholar 

  • Oeda K, Salinas J and Chua N-H (1991) A tobacco bZip transcription activator (TAF-1) binds to a G-box like motif conserved in plant genes. EMBO J 10: 1793–1802

    PubMed  CAS  Google Scholar 

  • Parry AD (1993) Abscisic acid metabolism. Methods Plant Biochem 9: 381–402

    CAS  Google Scholar 

  • Pena-Cortes H, Sanchez-Serrano J, Mertens R, Willmitzer L and Prat S (1989) Abscisic acid is involved in the wound-induced expression of the proteinase inhibitor II gene in potato wnd tomato. Proc Natl Acad Sci USA 86: 9851–9855

    Article  PubMed  CAS  Google Scholar 

  • Piatkowski D, Schneider K, Salamini F and Bartels D (1990) Charaterization of five abscisic acid-responsive cDNA clones isolated from the desiccation-tolerant plant Craterostigma plantagineum and their relationship to other water-stress genes. Plant physiol 94: 1682–1688

    Article  PubMed  CAS  Google Scholar 

  • Pla M, Gomez J, Goday A and Pages M (1991) Regulation of the abscisic acid-responsive gene rab28 in maize viviparous mutants. Mol Gen Genet 230: 394–400

    Article  PubMed  CAS  Google Scholar 

  • Robertson DS (1955) The genetic vivipary in maize. Genetics 40: 745–760

    PubMed  CAS  Google Scholar 

  • Schroeder JI (1992) Plasma membrane ion channel regulation during abscisic acid-induced closing of stomata. Philos Trans R Soc Lond B 338: 83–89

    Article  CAS  Google Scholar 

  • Schwartz A, Wu WH, Tucker EB and Assmann SM (1994) Inhibition of inward K+ channels and stomatal response by abscisic acid: An intracellular locus of phytohormone action. Proc Natl Acad Sci USA 91: 4019–4023

    Google Scholar 

  • Skriver K and Mundy J (1990) Gene expression in response to abscisic acid and osmotic stress. Plant Cell 2: 503–512

    PubMed  CAS  Google Scholar 

  • Shen Q and Ho DTH (1995) Functional dissection of an abscisic acid ABA-inducible gene reveals two independent ABA-responsive complexes each containing a G-box and a novel cis-acting element. Plant Cell 7: 295–307

    PubMed  CAS  Google Scholar 

  • Thomashow MF (1990) Molecular genetics of cold acclimation in higher plants. Adv Genet 28: 99–131

    Article  CAS  Google Scholar 

  • Vilardell J, Goday A, Freire MA, Torrent M, Martinez C, Tome JM and Pages M (1990) Gene sequence, developmental expression, and protein phosphorylation of RAB-17 in maize. Plant Mol Biol 14: 423–432

    Article  PubMed  CAS  Google Scholar 

  • Vilardell J, Martinez-Zapater JM, Goday A, Arenas C and Pages M (1994) Regulation of the rabl7 gene promoter in transgenic Arabidopsis wild-type, ABA-deficient, and ABA-insensitive mutants. Plant Mol Biol 24: 561–569

    Google Scholar 

  • Wilhelm KS and Thomashow MF (1993) Arabidopsis thaliana cor 15b, an apparent homologue of cor 15a, is strongly responsive to cold and ABA, but not drought. Plant Mol Biol 23: 1073–1077

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K and Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsivenes to drought, low-temperature, or high-salt stress. Plant Cell 6. 251–264

    PubMed  CAS  Google Scholar 

  • Zeevaart JAD and Creelman RA (1988) Metabolism and physiology of Abscisic acid. Ann Rev Plant Physiol Plant Mol Biol 39: 439–473

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jensen, A.B. et al. (1996). Drought signal transduction in plants. In: Belhassen, E. (eds) Drought Tolerance in Higher Plants: Genetical, Physiological and Molecular Biological Analysis. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1299-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1299-6_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4721-2

  • Online ISBN: 978-94-017-1299-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics