Skip to main content

Antioxidant Dihydropyridines, A New and Comprehensive Therapy for Free Radical-Induced Cardiovascular Diseases

  • Chapter
Free Radicals in Biology and Environment

Part of the book series: NATO ASI Series ((ASHT,volume 27))

Abstract

The generation of free radicals has been implicated in the pathologies of a number of cardiovascular diseases like infarction, stroke and atherosclerosis. Free radicals initiate lipid peroxidation, which leads to the impairment of membrane function and finally cell death. This often results in irrecoverable tissue damage. Therefore, potentially useful drugs would be those that not only have effects on the symptoms of the disease, but also demonstrate antioxidant and free radical scavenging properties. Some calcium entry blockers (CEBs) of the dihydropyridine (DHP) family (e.g. lacidipine, amlodipine, nifedipine) have been shown to possess radical scavenging activity in addition to their potent vasorelaxant properties. Some DHPs are active in inhibiting the autoperoxidation of rat cortical membranes. The order of potency was lacidipine>nimodipine>nifedipine, with lacidipine having an activity comparable to vitamin E. Lacidipine was also potent in protecting cells from the marked impairment of calcium homeostasis caused by oxidative stress induced by H2O2. Similarly, in the isolated rabbit heart electrolysis of the perfusion medium increases coronary artery pressure and this is antagonised by prior treatment with lacidipine. In vivo marked protection has been seen in animal models of vascular damage. In the stroke-prone spontaneously hypertensive rat lacidipine, at doses that do not block the development of hypertension, prevent mortality and tissue damage to brain and kidney, organs at risk in this model. Lacidipine also blocked the development of arterial lesions in two animal models of atherosclerosis : the hypercholesterolaemic rabbit and the hypercholesterolaemic hamster. These actions can be at least partially ascribed to mechanisms other than simple blood pressure reduction and might well relate to antioxidant activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Halliwell, B... (1987) Oxidants and human disease: some new conceptts. FASEB J. 1: 358–364.

    CAS  Google Scholar 

  2. Cotgreave, I.A., Moldeus, P., and Orrenius, S. (1988) Host biochemical defense mechanisms against prooxidants. Ann. Rev. Pharmacol. Toxicol. 28: 189–212.

    Article  CAS  Google Scholar 

  3. Kulmacz, R.J. and Lands, W.E.M. (1983) Requirement for hydroperoxide by the cyclooxigenase and peroxidase activities of prostaglandin H synthase. Prostaglandins, 25, 531–540.

    PubMed  CAS  Google Scholar 

  4. Girotti, A.W. (1985) Mechanism of lipid peroxidation. J.Free Rad. Biol. Med. 1, 87–95.

    Article  CAS  Google Scholar 

  5. Dean, R.T., Hunt, J.V., Grant, A.J., Yamamoto, Y., and Niki, E. (1991) Free radical damage to proteins: the influence of the relative localization of radical generation, antioxidants, and target proteins. Free Rad. Biol. Med. 11, 161–168.

    Article  PubMed  CAS  Google Scholar 

  6. Davies, K.J.A. (1987) Protein damage and degradation by oxygen radicals. I. General aspects. J.Biol.Chem. 262, 9895–9901.

    Google Scholar 

  7. Davies, K.J.A., Delsignore, M.E., and Sharon, W.L. (1987) Protein damage and degradation by oxygen radicals. II. Modification of amino acids. J.Biol.Chem. 262, 9902–9907.

    PubMed  CAS  Google Scholar 

  8. Davies, K.J.A. and Delsignore, M.E. (1987) Protein damage and degradation by oxygen radicals. Ill. Modification of secondary and tertiary structure. J.Biol.Chem. 262, 9908–9913.

    Google Scholar 

  9. Fridrovich, I... (1984) Overview: bilolgical sources of 02-. Method Enzymol. 105, 59–61.

    Article  Google Scholar 

  10. Simic, M.G., Jovanovic, S.V., and Niki, E. (1992) Mechanism of lipid oxidative process and their inhibition. ACS Symp.Ser. 500, 14–32.

    Article  CAS  Google Scholar 

  11. Cross, A.R., Yea, C.M., and Jones, O.T.G. (1988) Inhibition of superoxide generation by phagocytic leukocytes. Biochem. Soc. Trans. 16, 888–889.

    CAS  Google Scholar 

  12. Rossi, F. (1986) The O2-forming NADPH oxidase of the phagocytes: nature, mechanism of activation and function. Biochim.Biophys.Acta, 853, 65–89.

    Article  PubMed  CAS  Google Scholar 

  13. Greenwald, R.A., Rush, S.W., Moak, S.A., and Weitz, Z. (1989) conversion of superoxide generated by polymorphonuclear leukocyt leokocites to hydroxyradical: a direct spectrophotometric detection system. Free Radical Biol. Med. 6, 385–392.

    Google Scholar 

  14. Deby, C. and Goutier, R. (1990) New perspectives on the biochemistry of superoxide anion and the efficency of superoxide dismutases. Biochem.Pharmacol. 39, 399–405.

    Article  PubMed  CAS  Google Scholar 

  15. Yamamoto, S. (1992) Mammalian lipoxygenases: molecular structures and functions. Biochim.Biophys.Acta, 1128, 117–131.

    Article  PubMed  CAS  Google Scholar 

  16. Condell, R.A. and Tappel, A.L. (1983) Evidence for suitability of glutatione peroxidase as protective enzyme: studies of oxidative damage, ranaturation and proteolysis. Arch.Biochem. 223,:407–416.

    Article  PubMed  CAS  Google Scholar 

  17. Maiorino, M., Gregolin, C., and Ursini, F. (1983) Phospholipid hydroperoxide glutatione peroxidase. Method Enzymol. 186, 448–457.

    Article  Google Scholar 

  18. Ursini, F. and Bindoli, A. (1987) The role of selenium peroxidases in the protection against oxidative damage of membranes. Chem. Phys. Lipids, 44, 255–276.

    Article  PubMed  CAS  Google Scholar 

  19. Porter, N.A. (1984) Chemistry of lipid peroxidation. Method Enzymol. 105, 273–293.

    Article  CAS  Google Scholar 

  20. Gardner, H.W. (1989) Oxygen radical chemistry of polyunsaturated fatty acids. Free Rad.Biol.Med. 7, 65–86.

    Article  PubMed  CAS  Google Scholar 

  21. Schaich, K.M. (1992) Metal and lipid oxidation. Contemporary issues. Lipids, 27, 209–218.

    Article  PubMed  CAS  Google Scholar 

  22. Thomas, C.E., Jackson, R., Ohlweiler, D.F., and Ku, G. (1994) Multiple lipid oxidation products in low density lipoproteins induce interleukin-1 beta release from human blood mononuclear cells. J. Lipid Res. 35, 417–427.

    PubMed  CAS  Google Scholar 

  23. Pryor, W.A. and Porter, N.A. (1990) Suggested mechanisms for the production of 4-hydroxy-2-nonenal from the autoxidation of polyunsaturated fatty acids. Free Rad.Biol. Med. 8, 541–543.

    Article  PubMed  CAS  Google Scholar 

  24. Esterbauer, H., Schaur, R.J., and Zollner, H. (1991) Chemistry and biochemistry of 4-hydroxinonenal, malondialdehyde and related aldehydes. Free Rad.Biol. Med. 11, 81–128.

    Article  PubMed  CAS  Google Scholar 

  25. Brown, M.S. and Goldstein, J.L. (1983) Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Ann. Rev.Biochem. 52, 223–261.

    Article  PubMed  CAS  Google Scholar 

  26. Esterbauer, H., Gebicki, J., Puhl, H., and Jurgens, G. (1992) The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Rad.Biol. Med. 13, 341–390.

    Article  PubMed  CAS  Google Scholar 

  27. Ferrari, R., Ceconi, C., Curello, S., Cargnoni, A., Belloli, S., Condorelli, E., Pasini, E., Visioli, O., and Albertini, A. (1987) Molecular events during myocardial ischemia and reperfusion: experimental and clinical evidence. Biotechnology in Clinical Medicine, Raven Press Ltd, 25–44.

    Google Scholar 

  28. Esterbauer, H., Wag, G., and Puhl, H. (1993) Lipid peroxidation and its role in atherosclerosis. Brit.Med.Bull. 49, 566–576.

    PubMed  CAS  Google Scholar 

  29. Schwartz, S.M. and Reidi, M.A. (1987) Common mechanisms of proliferation of smooth muscle in atherosclerosis and hypertension. Human pathology, 18, 140–247.

    Article  Google Scholar 

  30. Kim, S., Ohta, K., Hamaguchi, A., Yukimura, T., Miura, K., and lwao, H. (1996) Effects of an AT1 receptor antagonist, on ACE inhibitor and a calcium channel antagonist on cardiac gene expression in hypertensive rats. Brit.J.Pharmacol. 118, 549–556.

    Article  CAS  Google Scholar 

  31. Haynes, W.G. and Webb, D.J. (1993) The endothelin family of peptides: local hormones woth adverse in heart disease? Clin.Sci. 84, 485–500.

    PubMed  CAS  Google Scholar 

  32. Utermann, G. (1989) The mistery of lipoprotein(a). Science, 246, 904–910.

    Article  PubMed  CAS  Google Scholar 

  33. Heinecke JW, R. (1987) The role of sulfur-containing amino acids in superoxide production and modification of low density lipoprotein by arterial smooth muscle cells. J.Biol.Chem.: 262, 10098–10103

    PubMed  CAS  Google Scholar 

  34. Heinecke JW, B. (1986), Superoxide-mediated modification of low density lipoprotein by arterial smooth muscle cells. J.Clin.lnvest.: 77, 757–761

    Article  CAS  Google Scholar 

  35. Partharasarathy S, Wieland, E., and Steinberg, D. (1988) Inhibition of endothelial cell-induced modification of low densi ty lipoprotein (LDL) by lipoxigenase inhibitors. Circulation, 78 supp 11: 14

    Google Scholar 

  36. Cathcart, M., McNally, A.K., and Chisolm, G.M. (1991) Lipoxygenase-mediated trasformation of human low density lipoprotein to an oxidized and cytotoxic complex. J.Lipid.Res. 32, 6370.

    Google Scholar 

  37. McNally, A.K., Chisolm III, G.M., Morel, D.W., and Catchart, M.K. (1990) Activated human monocytes oxidize low-density lipoprotein by a lipoxygenase-dependent pathway. J.Immunol. 145, 254–259.

    CAS  Google Scholar 

  38. Maiorino, M., Thomas, J.P., Girotti, A.W., and Ursini, F. (1991) Reactivity of phospholipid hydroperoxide glutathione peroxidase with membrane and lipoprotein lipids hydroperoxides. Free Rad. Res. Comms. 12–13, 131–135.

    Article  Google Scholar 

  39. Thomas, J.P., Maiorino, M., Ursini, F., and Girotti, A.W. (1990): Protective action of phospholipid hydroperoxide glutathione peroxidase against membrane-damaging lipid peroxidation. J.Biol.Chem. 265: 454–461.

    PubMed  CAS  Google Scholar 

  40. Haenen, G.R.M.M., De Rooij, B.M., Vermeulen, N.P.E., and Bast, A. (1990) Mechanism of the reaction of ebselen with endogenous thiols: dihidrolipoate is a better cofactor than glutathione in the peroxidase. Mol.Pharmacol. 37, 412–422.

    PubMed  CAS  Google Scholar 

  41. Thomas, C.E. and Jackson, C.E. (1991) Lipid hydroperoxide involvement in copper-dependent and independent oxidation of low density lipoprotein. J.Pharmacol.Exp.Ther. 256, 1182–1188.

    PubMed  CAS  Google Scholar 

  42. Kato, K., Shimamoto, N., and Hirata, M. (1988) Studies on scavengers of active oxygen species. 1. Synthesis and biological activity of 2–0-alkylascorbic acids. J.Med.Chem. 31, 793–798.

    Article  PubMed  CAS  Google Scholar 

  43. Burton, G.W. and Ingold, K.U. (1986) Vitamin E: application of the principle of physical organic chem chemistry to the exploration of its structure and function. Acc.Chem.Res. 19, 194–201.

    Article  CAS  Google Scholar 

  44. Burton, G.W. and Ingold, K.U. (1981): Autoxidation of biological molecules: 1.The antioxidant activity of vitamin E and related chain-breaking antioxidants. J.Am.Chem.Soc. 103: 6472–6477.

    Article  CAS  Google Scholar 

  45. Yoshioka, T., Fujita, T., Kanai, T., Aizawa, Y., Kurumada, T., Hasegawa, K., and Horikoshi, H. (1989) Horikoshi H Studies on hindered phenols and analogues. Hypolipidemic and hypoglycemic agents with ability to inhibit lipid peroxidation. J.Med.Chem. 32, 42 1428.

    Google Scholar 

  46. Buckley, M.M.T., Goa, K.L., Price, A.H., and Brogden, R.N. (1989) Probucol. A reappraisal of its pharmacological properties and therapeutic use in hypercholesterolemia. Drugs, 37, 761–800.

    Article  PubMed  CAS  Google Scholar 

  47. Hudson, B.J.F. and Lewis, J.I. (1983) Polyhydroxy flavonoid antioxidants for edible oils. Structural criteria fir activity. Food Chem. 10, 47–55.

    Article  CAS  Google Scholar 

  48. Afanas’ev, I.B., Dorozhko, A.I., Brodskii, A.V., Kostyuk, V.A., and Potapovitch, A.I. (1989) Chelating and free radical scavenging mechanisms of inhibitory action of rutin and quercetin in lipid peroxidation. Biochem.Pharmacol. 38, 1763–1769.

    Article  PubMed  Google Scholar 

  49. Henry, P.D. (1990): Calcium channel blockers and atherosclerosis. J. Cardiovasc. Pharmacol. 16 (suppl.1): S 12-S 15.

    Google Scholar 

  50. Cosenza, C.A., Cramer, D.V., Cunneen, S.A., Tuso, P.J., Wang, H.K., and Malowka, L. (1994) Protective effect of the lazaroid U74006F in cold hischemia-reperfusion injury of the liver. Hepatology, 19, 418–425.

    Article  PubMed  CAS  Google Scholar 

  51. Hall, E.D., Braughler, J.M., Yonkers, P.A., Smith, S.L., Linseman, K.L., Means, E.D., Scherch, H.M., Von Voigtlander, P.F., Lahti, R.A., and Jacobsen, E.J. (1991) U-78517F: a potent inhibitor of lipid peroxidation with activity in experimental brain injury and ischemia. J.Pharmacol.Exp.Therap. 258, 688–694.

    CAS  Google Scholar 

  52. Carrea, F.P., Lesnefsky, E.J., Kaiser, D.G., and Horwitz, L.D. (1992) The lazaroid U74006F, a 21-aminosteroid inhibitor of lipid peroxidation, attenuates myocardial injury from ischemia and reperfusion. J.Cardiovasc.Pharmacol. 20, 230–235.

    Article  PubMed  CAS  Google Scholar 

  53. Hall, E.D. and McCall, J.M. (1993) Lazaroids: potent inhibitors of iron-dependent lipid peroxidation for neurodegenerativa disorders. Iron Cent.Nerv.Sys.Disord. Springer, Vienna, 173–188.

    Google Scholar 

  54. Nilsson, U.A., Olsson, L., Carlin, G., and Bylund-Fellenius, A. (1989) Inhibition of lipid peroxidation by spin labels Relationship between structure and function. J.Biol.Chem. 264, 11131–11135.

    PubMed  CAS  Google Scholar 

  55. Kalyanaraman, B., Joseph, J., and Partharasarathy, S. (1993) The use of spin traps to investigate site-specific formation of free radicals in low-density lipoprotein oxidation. Biochem.Soc.Trans. 21, 318–321.

    PubMed  CAS  Google Scholar 

  56. Lupo, E., Locher, R., Weisser, B., and Vetter, W. (1994) In vitro antioxidant activity of calcium antagonists against LDL oxidation compared with a-tocopherol. Biochem.Biophys.Res.Commun. 203, 1803–1808.

    Article  PubMed  CAS  Google Scholar 

  57. Parmley, W.W., Blumlen, S., and Sievers, R. (1985) Modification of experimental atherosclerosis by calcium-channel blockers. Am.J.Cardiol. 55, 165B–171B.

    Article  PubMed  CAS  Google Scholar 

  58. Bernini, F., Catapano, A.L., Corsini, A., Fumagalli, R., and Paoletti, R. (1989) Effect of calcium antagonists on lipids and atherosclerosis. Am.J.Cardiol. 64, 1291–1341.

    Article  Google Scholar 

  59. Weinstein, D.B. and Heider, J.G. (1989) Antiatherogenic properties of calcium antagonists. Am.J.Medicine, 86 (supp.4), 27–32.

    Article  CAS  Google Scholar 

  60. Weinstein, D.B. and Heider, J.G. (1987) Antiatherogenic properties of calcium antagonists. Am.J.Cardiol. 59, 163B–172B.

    Article  PubMed  CAS  Google Scholar 

  61. Jackson, C.L., Bush, R.C., and Bowyer, D.E. (1989) Mechanism of antiatherogenic action of calcium antagonists. Atherosclerosis, 80, 17–26.

    Article  PubMed  CAS  Google Scholar 

  62. Kiowski, W., Eme, P., and Buhler, F.R. (1989) Effects of calcium antagonists on atherogenesis. Clin.Exp.Hypertens. Al 1(5 and 6 ), 10851096.

    Google Scholar 

  63. Weinstein, D.B. (1988) The antiatherogenic potential of calcium antagonists. J.Cardiovasc.Pharmacol. 12 (supp.6) S29 - S35.

    Article  PubMed  CAS  Google Scholar 

  64. Hugenholtz, P.G., Lichtlen, P., van der Giessen, W., Becker, A.E., Nayler, W.G., Fleckestein, A., and Hulsman, W.C. (1986) On a possible role for calcium antagonists in atherosclerosis. A personal view. Eur.Heart J. 7, 546–559.

    PubMed  CAS  Google Scholar 

  65. Chobanian, A... (1987) Effects of calcium channel antagonists and other antihypertensiv drugs on atherogenesis. J.Hypertens. 5 (supp.4), S43 - S48.

    Article  CAS  Google Scholar 

  66. Schmitz, G., Hankowitz, H., and Kovacs, E.M. (1991) Cellular processes in atherogenesis: potential targets of Ca++ channel blockers. Atherosclerosis, 88, 109–132.

    Article  PubMed  CAS  Google Scholar 

  67. Ouchi, Y. and Orimo, H. (1990) The role of calcium antagonists in the treatment of atherosclerosis and hypertension. J.Cardiovasc.Pharmacol. 16 Supp. 2, S1 - S4.

    Google Scholar 

  68. Kjieldsen, K. and Stender, S. (1989) Calcium antagonists and experimental atherosclerosis. Proc.Soc.Exp.Biol.Med. 190, 219–228.

    Google Scholar 

  69. Bernini, F., Corsini, A., Raiteri, M., Soma, M.R., and Paoletti, R. (1993) Effect of Lacidipine on experimental models of atherosclerosis. J.Hypertens. 11 supp 1, s61–;s66.

    Google Scholar 

  70. Nayler, W.G. and Panagiotopulos, S. (1993) The antiatherosclerotic effect of calcium antagonists and the implications in hypertension. Am. Heart J. 125, 626–629.

    Article  PubMed  CAS  Google Scholar 

  71. Betz, E., Weiss, H.D., Heinle, H., and Fotev, Z. (1991) Calcium antagonists and atherosclerosis. J. Cardiovasc.Pharmacol. 18 (supp1.10), S71 - S75.

    PubMed  CAS  Google Scholar 

  72. Spedding, M. and Paoletti, R. (1992) Classification of calcium channels and the sites of action of drugs modifyng channel function. Pharmacol.Review, 44, 363–376.

    CAS  Google Scholar 

  73. Martens, F.M., Verhoeven, J.M., Varma, C.A.G.O., and Bergwerf, P. (1983) Photooxidation of 1,4-dihydropyridines by various electron acceptors: a laser flash photolysis study. J.Photochem. 22, 99–113.

    Article  CAS  Google Scholar 

  74. Brewster, M.B., Pop, E., and Bodor, N. (1994) Contribution of the orbital techniques to the study of dihydropyridines. Heterocycles, 37, 1373–1415.

    Article  CAS  Google Scholar 

  75. Janero, D.R., Burghart, B., and Lopez, R. (1988) Protection of cardiac membrane phospholipid against oxidative injury by calcium antagonists. Biochem.Pharmacol. 37, 4197–4203.

    Article  PubMed  CAS  Google Scholar 

  76. Janero, D.R. and Burghardt, B. (1989) Antiperoxidant effects of dihydropyridine calcium antagonists. Biochem.PharmacoI. 38, 43444348.

    Google Scholar 

  77. Mak, I.T. and Weglicki, W.B. (1990) Comparative antioxidant activities of propanolol,nifedipine, verapamil and diltiazem against sarcolemmal membrane lipid peroxidation. Circ.Res. 66, 1449–1452.

    Article  PubMed  CAS  Google Scholar 

  78. Mak, I.T., Boehme, P., and Weglicki, W.B. (1992): Antioxidant effect of calcium channel blockers against free radical injury in endothelial cells. Circ.Res. 70: 1099–1103.

    Article  PubMed  CAS  Google Scholar 

  79. Kim, Y.S., Yoon, Y.R., and Park, C.W. (1993) Protective effects of calcium antagonists and vitamin E on the ischemia-induced neuronal damage in brain slices. Korean J.Pharmacol. 29, 9–22.

    CAS  Google Scholar 

  80. Gaviraghi, G. (1989) Lacidipine, a new 1,4-dihydropyridine calcium channel antagonist possessing a potent and long lasting anthypertensive activity Trend Med. Chem. 88, 675–690.

    Google Scholar 

  81. van Amsterdam, F.T., Roveri, A., Majorino, M., Ratti, E., and Ursini, F. (1992) Lacidipine: a dihydropyridine calcium antagonist with antioxidant activity. Free Rad.Biol.Med. 12, 183–187.

    Article  PubMed  Google Scholar 

  82. Micheli, D., Ratti, E., Toson, G., and Gaviraghi, G. (1991) Pharmacology of lacidipine, a vascular-selective calcium antagonist. J. Cardiovasc. Pharmacol. 17 (Supp. 4), S1 - S8.

    PubMed  CAS  Google Scholar 

  83. Ohkawa, H., Ohishi, N., and Yagi, K. (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal.Biochem. 95, 351–358.

    Article  PubMed  CAS  Google Scholar 

  84. Roveri, A., Coassin, M., Maiorino, M., Zamburlini, A., van Amsterdam, F.T., Ratti, E., and Ursini, F. (1992) Effect of hydrogen peroxide on calcium homeostasis in smooth muscle cells. Archiv.Biochem.Biophys. 297, 265–270.

    Article  CAS  Google Scholar 

  85. Herbette, G., Gaviraghi, G., Tulenko, T., and Mason, R.P. (1992) Molecular interaction between lacidipine and biological membranes. J.Hypertens. 11 (suppl. 1), s13 - s19.

    Article  Google Scholar 

  86. Herbette, L.G., Mason, P.E., Gaviraghi, G., Mason, R.P., and Trumbore, M. (1993) Thermodynamic basis for the molecular interactions of lacidipine with membranes. Biophys.J. 64 (2 part 2), A292

    Google Scholar 

  87. Cristofori, P., Sbarbati, A., Accordini, C., Terron, A., and Micheli, D. (1995) Protective action of lacidipine in cardiac hypertrophy of the spontaneously hypertensive stroke-prone rat: a ultrastructural study. J. Submicrosc. Cytol. Pathol. 26, 331–340.

    Google Scholar 

  88. Ursini, F. (1995) Mechanism of free radical oxidation and vascular damage: protective effect of dihydropyridines. Multiple risk factor in cardiovascular disease, Fondazione Giovanni Lorenzini,Milano

    Google Scholar 

  89. Feron, O., Solomone, S., and Godfraind, T. (1996) Action of the calcium channel blocker Lacidipine on cardiac hypertrophy and endothelin-1 gene expression in stroke-prone hypertensive rats. Brit. J. Pharmacol. 118, 659–664.

    Article  CAS  Google Scholar 

  90. Magagna, A., Taddei, S., Ghiadoni, L., Virdis, A., Uleri, S., and Salvetti, A. (1996) Effect of lacidipine on endothelial function in hypertensive patients. In Press

    Google Scholar 

  91. Bernini, F., Corsini, A., Raiteri, M., Soma, M.R., and Paoletti, R. (1992) Effect of Lacidipine on experimental models of atherosclerosis. J.Hypertens. 11 supp 1, s61–s66, 1993.

    Google Scholar 

  92. Soma, M.R., Parolini, C., Donetti, E., Galli, C., Paoletti, R., and Fumagalli, R. (1994) Lacidipine: in vivo effects on intimai carotid thickening in hypercholesterolemic rabbits. Br.J.Pharmacol. 111, 21 P

    Article  Google Scholar 

  93. Cristofori, P., Micheli, D., Lanzoni, D., Spagnoli, D., Tarter, G., Pastorino, A., Sbarbati, A., Accordini, C., Osculati, F., Ratti, E., and Gaviraghi, G. (1993) Antiatherosclerotic activity of lacidipine in cholesterol-fed hamsters. Br.J.Pharmacol. 111, 270 P

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gaviraghi, G., Pastorino, A.M., Ratti, E., Trist, D.G. (1997). Antioxidant Dihydropyridines, A New and Comprehensive Therapy for Free Radical-Induced Cardiovascular Diseases. In: Minisci, F. (eds) Free Radicals in Biology and Environment. NATO ASI Series, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1607-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1607-9_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4831-8

  • Online ISBN: 978-94-017-1607-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics