Skip to main content

The Effect of Spatial Scale of Climatic Change Scenarios on Simulated Maize, Winter Wheat, and Rice Production in the Southeastern United States

  • Chapter
Issues in the Impacts of Climate Variability and Change on Agriculture

Abstract

We use the CERES family of crop models to assess the effect of different spatial scales of climate change scenarios on the simulated yield changes of maize (Zea mays L.), winter wheat (Triticum aestivum L.), and rice (Oryza sativa L.) in the Southeastern United States. The climate change scenarios were produced with the control and doubled CO2 runs of a high resolution regional climate model and a coarse resolution general circulation model, which provided the initial and lateral boundary conditions for the regional model. Three different cases were considered for each scenario: climate change alone, climate change plus elevated CO2, and the latter with adaptations. On the state level, for most cases, significant differences in the climate changed yields for corn were found, the coarse scale scenario usually producing larger modeled yield decreases or smaller increases. For wheat, however, which suffered large decreases in yields for all cases, very little contrast in yield based on scale of scenario was found. Scenario scale resulted in significantly different rice yields, but mainly because of low variability in yields. For maize the primary climate variable that explained the contrast in the yields calculated from the two scenarios is the precipitation during grain fill leading to different water stress levels. Temperature during vernalization explains some contrasts in winter wheat yields. With adaptation, the contrasts in the yields of all crops produced by the scenarios were reduced but not entirely removed. Our results indicate that spatial resolution of climate change scenarios can be an important uncertainty in climate change impact assessments, depending on the crop and management conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams R. M., McCarl, B. A., and Mearns, L. 0.: 2003, ‘The Effects of Spatial Scale of Climate Scenarios on Economic Assessments: An Example from U.S. Agriculture’, Clint. Change 60, 131–148.

    Article  Google Scholar 

  • Adams R. M., Rosenzweig, C., Peart, R. M., Ritchie, J. T., McCarl, B. A., Glyer, J.D., and Curry, R. B.: 1990, ‘Global Climate Change and U.S. Agriculture’, Nature 345, 219–224.

    Article  Google Scholar 

  • Aggarwal P. K. and Mall, R. K.: 2002, ‘Climate Change and Rice Yields in Diverse Agroenvironments of India. II. Effect of Uncertainties in Scenarios and Crop Models on Impact Assessment’, Clim. Change 52, 331–343.

    Article  Google Scholar 

  • Alexandrov V. A. and Hoogenboom, G.: 2000, ‘Vulnerability and Adaptation Assessments of Agricultural Crops under Climate Change in the Southeastern U.S.A.’, Theor. Appl. Climatol. 67, 45–63.

    Article  Google Scholar 

  • Alexandrov V. A. and Hoogenboom, G.: 2001, ‘Climate Variation and Crop Production in Georgia, U.S.A., during the Twentieth Century’, Climate Res. 17, 33–43.

    Article  Google Scholar 

  • Bacsi Zs. and Hunkar, M.: 1994, ‘Assessment of the Impacts of Climate Change on the Yields of Winter Wheat and Maize, Using Crop Models’, Quarterly Journal of the Hungarian Meteorological Service 98 (2), 119–134.

    Google Scholar 

  • Bates G. T., Hostetler, S. W., and Giorgi, E: 1996, ‘2-Year Simulation of the Great-Lakes Region with a Coupled Modeling System’, Mon. Wea. Rev. 123, 1505–1522.

    Article  Google Scholar 

  • Bates G. T., Giorgi, F., and Mearns, L. O., Unpublished Data: National Center for Atmospheric Research.

    Google Scholar 

  • Baumer, O., Kenyon, P., and Bettis, J.: 1994, ‘Prediction of Soil Properties’, in Map Unit Use Fuies (MUUF), User’s Manual Version 2.14, Natural Resources Conservation Service, Wetland Science Institute.

    Google Scholar 

  • Brown, R. A., Rosenberg, N. J., Easterling, W. E., Hays, C., and Mearns, L. 0.: 2000, ‘Potential Production and Environmental Effects of Switch Grass and Traditional Crops under Current and Greenhouse-Altered Climate in the MINK Region of the Central United States’, Ecology and Agricultural Environment 78, 31–47.

    Article  Google Scholar 

  • Carbone G., Kiechle, W., Locke, C., Mearns, L. O., McDaniel, L., and Downton, M.: 2003, ‘Response of Soybean and Sorghum to Varying Spatial Scales of Climate Change Scenarios in the Southeastern United States’, Clim. Change 60, 73–98.

    Article  Google Scholar 

  • Cheyglinted S., Ranamukhaarachchi, S. L., and Singh, G.: 2001, ‘Assessment of the CERES-Rice Model for Rice Production in the Central Plain of Thailand’, J. Agricultural Science 137, 289298.

    Google Scholar 

  • Curry R. B., Peart, R. M., Jones, J. W., Boote, K. J., and Allen, L. H. Jr.: 1990, ‘Simulation as a Tool for Analyzing Crop Response to Climate Change’, Transactions of the ASAE 33 (3), 981–990.

    Google Scholar 

  • Dhakhwa G. B. Campbell, C. L., LeDuc, S. K., and Cooter, E. J.: 1997, ‘Maize Growth: Assessing the Effects of Global Warming and CO2 Fertilization with Crop Models’, Agric. For. Meteorol. 87 253–272.

    Google Scholar 

  • Doherty R. M., Mearns, L. O., Reddy, R. J., Downton, M., and McDaniel, L.: 2003, ‘Impacts of the Spatial Scale of Climate Scenarios on Simulated Cotton Production in the Southeastern U.S.A.’, Clim. Change 60, 99–130.

    Article  Google Scholar 

  • Gates, L.: 1985, ‘The Use of General Circulation Models in the Analysis of the Ecosystem Impacts of Climatic Change’, Clim. Change 7, 267–284.

    Article  Google Scholar 

  • Giorgi, F., Mearns, L., Shields, S., and McDaniel, L.: 1998, ‘Regional Nested Model Simulations of Present Day and 2 x CO2 Climate over the Central Great Plains of the United States’, Clim. Change 40, 457–493.

    Article  Google Scholar 

  • Giorgi, F. et al.: 2001, ‘Regional Climate Information: Evaluations and Projections’, Chapter 10 in Houghton et al., IPCC Third Assessment Report. The Science of Climate Change, Cambridge University Press, Cambridge, pp. 583–638.

    Google Scholar 

  • Godwin, D., Singh, U., Ritchie, J. T., and Alocilja, E. C.: 1992, A User’s Guide to CERES-rice, Int. Fertilizer Development Ctr., Muscle Shoals, AL.

    Google Scholar 

  • Graham, W. D. Jr., Gambrell, R. H. and Myers, C. W.: 1993, ‘Performance of Small Grain Varieties in South Carolina - 1993’, Clemson University, South Carolina Agriculture and Forestry Research System.

    Google Scholar 

  • Graham, W. D. Jr., Gambrell, R. H. and Myers, C. W.: 1996, ‘Performance of Small Grain Varieties in South Carolina - 1996’, Clemson University, South Carolina Agriculture and Forestry Research System.

    Google Scholar 

  • Guerena, A., Ruiz-Ramos, M., Diaz-Ambrona, C., Conde, J., and Minguez, M.: 2001, ‘Assessment of Climate Change and Agriculture in Spain Using Climate Models’, Agron. J. 93, 237–249.

    Article  Google Scholar 

  • Hodges T., Botner, D., Sakamoto, C., and Hays Haug, J.: 1987, ‘Using the CERES-Maize Model to Estimate Production for the U.S. Cornbelt’, Agric. For. Meteorol. 40, 293–303.

    Article  Google Scholar 

  • Hoogenboom G., Jones, J. W., Wilkens, R W., Batchelor, W. D., Bowen, W. T., Hunt, L. A., Pickering, N. B., Singh, U., Godwin, D. C., Baer, B., Boote, K. J., Ritchie, J. T., and White, J. W.: 1994, ‘Crop Models’, in Tsuji G. Y, Uehara, G., and Batas, S. (eds.), DSSAT Version 3, University of Hawaii, Honolulu, Hawaii, Vol. 2, pp. 95–244.

    Google Scholar 

  • Iglesias A.: 1995, ‘Modelling the Effects of Climate Change and Climatic Variability on Crops at the Site Scale. Effects on Maize’, in Harrison P. A., Butterfield, R. E., and Downing, T. E. (eds.), Climate Change and Agriculture in Europe. Assessment of Impacts and Adaptations, Research Report No. 9, University of Oxford, U.K., pp. 223–231.

    Google Scholar 

  • IPCC: 1996, ‘Climate Change 1995: The Science of Climate Change, Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change’, in Houghton, J. T., Meira Filho, L.G., Callander, B. A., Harris, N., Kattenberg, A., and Maskell K. (eds.), Cambridge University Press, Cambridge, U.K., pp. 572.

    Google Scholar 

  • Jones C. A. and Kiniry, J. R. (eds.): 1986, ‘CERES-Maize: A Simulation Model of Maize Growth and Development’, Texas AundM University Press, 194 pp.

    Google Scholar 

  • Kiniry J. R. and Bockholt, A. J.: 1998, ‘Maize and Sorghum Simulation in Diverse Texas Environments’, Agron. J. 90, 682–687.

    Article  Google Scholar 

  • Kiniry J. R., Williams, J. R., Vanderlip, R. L., Atwood, J. D., Reicosky, D. C., Mulliken, J., Cox, W. J., Mascagni, H. J., Hollinger, S. E., and Wiebold, W. J.: 1997, ‘Evaluation of Two Maize Models for Nine U.S. Locations’, Agron. J. 89, 421–426.

    Article  Google Scholar 

  • Lambert D. K., McCarl, B. A., He, Q., Kaylen, M. S., Rosenthal, W., Chang, C. C., and Nayda, W. I.: 1995, ‘Uncertain Yields in Sectoral Welfare Analysis: An Application to Global Warming’, J. Agr. Appl. Econ. 27, 423–436.

    Google Scholar 

  • Littell R. C., Milliken, G. A., Stroup, W. W., and Wolfinger, R. D.: 1996, SAS System for Mixed Models, SAS Institute Inc., Cary, NC, U.S.A., 633 pp.

    Google Scholar 

  • Liu W. T. H., Botner, D. M., and Sakamoto, C. M.: 1989, ‘Application of CERES-Maize Model to Yield Prediction of a Brazilian Maize Hybrid’, Agric. For. Meteorol. 45, 299–312.

    Article  Google Scholar 

  • Mall R. K. and Aggarwal, P. K.: 2002, ‘Climate Change and Rice Yields in Diverse Agroenvironments of India. I. Evaluation of Impact Assessment Models’, Clim. Change 52, 315–330.

    Article  Google Scholar 

  • Mascagni, H. J. Jr., Kang, S. M., and Burns, D. R.: 1998, ‘Influence of Planting Date and Hybrid Maturity on Corn Yield Performance and Plant Development on Sharkey Clay’.

    Google Scholar 

  • McCarl B. A., Chang, C. C., Atwood, J. D., and Nayda, W. I.: 2000, ‘The U.S. Agricultural Sector Model’, http://agecon.tamu.edu/faculty/mccarl/asm.html.

    Google Scholar 

  • McMaster G. S., Wilhelm, W. W., and Morgan, J. A.: 1992, ‘Simulating Winter Wheat Shoot Apex Phenology’, J. Agricultural Science Cambridge 119, 1–12.

    Article  Google Scholar 

  • Mearns L. O., Carbone, G., Doherty, R. M., Tsvetsinskaya, E. A., McCarl, B. A., Adams, R. M., and McDaniel, L.: 2003a, ‘The Uncertainty Due to Spatial Scale of Climate Scenarios in Integrated Assessments: An Example from U.S. Agriculture’, Integrated Assessment, accepted.

    Google Scholar 

  • Mearns, L. O., Easterling, W., Hays, C., and Marx, D.: 200la, ‘Comparison of Agricultural Impacts of Climate Change Calculated from High and Low Resolution Climate Model Scenarios: Part I. The Uncertainty of Spatial Scale’, Clim. Change 51, 131–172.

    Google Scholar 

  • Mearns L. O., Giorgi, F., Shields, C., and McDaniel, L.: 2003b, ‘Climate Scenarios for the Southeastern U.S. Based on GCM and Regional Model Simulations’, Clim. Change 60, 7–35.

    Article  Google Scholar 

  • Mearns, L. O., Hulme, M., Carter, T. R., Leemans, R., Lal M., and Whetton, P.: 2001b, ‘Climate Scenario Development’, Chapter 13 in Houghton et al., IPCC Third Assessment Report. The Science of Climate Change, Cambridge University Press: Cambridge, pp. 739–768.

    Google Scholar 

  • Mearns L. O., Mavromatis, T., Tsvetsinskaya, E., Hays, C., and Easterling, W.E.: 1999, ‘Comparative Responses of EPIC and CERES Crop Models to High and Low Spatial Resolution Climate Change Scenarios’, J. Geophys. Res. 104, 6623–6646.

    Article  Google Scholar 

  • Mearns L. O., Rosenzweig, C., and Goldberg, R.: 1992, ‘Effect of Changes in Interannual Climatic Variability on CERES-Wheat Yields: Sensitivity and 2 x CO2 General Circulation Model Studies’, Agric. For. Meteorol. 62, 159–189.

    Article  Google Scholar 

  • Mearns L. O., Rosenzweig, C., and Goldberg, R.: 1996, ‘The Effect of Changes in Daily and Interannual Climatic Variability on CERES-Wheat: A Sensitivity Study’, Clim. Change 32, 257–292.

    Article  Google Scholar 

  • Mearns L. O., Rosenzweig, C., and Goldberg, R.: 1997, ‘Mean and Variance Change in Climate Scenarios: Methods, Agricultural Applications, and Measures of Uncertainty’, Clim. Change 35, 367–396.

    Article  Google Scholar 

  • Moulin, A. P. and Beckie, H. J.: 1993, ‘Evaluation of the CERES and EPIC Models for Predicting Spring Wheat Grain Yield over Time’, Can. J. Plant Sci. 73, 713–719.

    Article  Google Scholar 

  • Pang X. P., Letey, J., and Wu, L.: 1997, ‘Yield and Nitrogen Uptake Prediction by CERES-Maize Model Under Semiarid Conditions’, Soil Sci. Soc. Am. J. 61, 254–256.

    Article  Google Scholar 

  • Parry M., Rosenzweig, C., Iglesias, A., Fischer, G., and Livermore, M.: 1999, ‘Climate Change and World Food Security: A New Assessment’, Global Environ. Change 9, 51–67.

    Article  Google Scholar 

  • Phillips J. G., Cane, M. A., and Rosenzweig, C.: 1998, ‘ENSO, Seasonal Rainfall Patterns and Simulated Maize Yield Variability in Zimbabwe’, Agric. For. Meteorol. 90, 39–50.

    Article  Google Scholar 

  • Reilly, J. et al.: 2003, ‘U.S. Agriculture and Climate Change: New Results’, Clim. Change 57, 43–69. Ritchie J. T.: 1985, ‘A User Oriented Model of the Soil Water Balance in Wheat’, in Day W. and Atykin, R. K. (eds.), Wheat Growth and Modeling, Plenum Press.

    Google Scholar 

  • Ritchie J. T., Alocilja, E. C., Singh, U., and Uehara, G.: 1986, ‘IBSNAT and the CERES-Rice Model’, in Weather and Rice, Published by IRRI.

    Google Scholar 

  • Ritchie J. T. and Otter, S.: 1985, ‘Description and Performance of CERES-Wheat: A User-Oriented Wheat Yield Model’, Chapter 10 in Willis, W. O. (ed.) ARS Wheat Yield Project, United States Department of Agriculture, Agricultural Research Service, pp. 159–175.

    Google Scholar 

  • Rosenzweig C.: 1990, ‘Crop Response to Climate Change in the Southern Great Plains: A Simulation Study’, Professional Geographer 42 (1), 20–37.

    Article  Google Scholar 

  • Rosenzweig C. and Parry, M. L.: 1994, ‘Potential Impact of Climate Change on World Food Supply’, Nature 367, 133–138.

    Article  Google Scholar 

  • Southworth J., Pfeifer, R. A., Habeck, M., Randolph, J. C., Doering, O. C., and Rao, D. G.: 2002, ‘The Sensitivity of Winter Wheat Yields in the Midwestern United States to Future Changes in Climate, Climate Variability, and CO2 Fertilization’, Clim. Res. 22, 73–86.

    Article  Google Scholar 

  • Southworth J., Randolph, J. C., Habeck, M., Doering, O. C., Pfeifer, R. A., Rao, D. G., and Johnston, J. J.: 2000, ‘Consequences of Future Climate Change and Changing Climate Variability on Maize Yields in the Midwestern United States’, Agriculture, Ecosystems and Environment 82, 139–158.

    Article  Google Scholar 

  • Thomson, A. M., Brown, R. A., Ghan, S. J., Izaurralde, R. C., Rosenberg, N. J., and Leung, L. R.: 2002, ‘Elevation Dependence of Winter Wheat Production in Eastern Washington State With Climate Change: A Methodological Study’, Clim. Change 54 (1), 141–164.

    Article  Google Scholar 

  • Tubiello F. N., Rosenzweig, C., Goldberg, R. A., Jagtap, S., and Jones, J. W.: 2002, ‘Effects of Climate Change on U.S. Crop Production: Simulation Results Using Two Different GCM Scenarios. Part I: Wheat, Potato, Maize, and Citrus’, Clim. Res. 20 (3), 259–270.

    Article  Google Scholar 

  • Tubiello F. N., Rosenzweig, C., Kimball, B. A., Pinter, P. J., Wall, G. W., Hunsaker, D. J., LaMorte, R. L., and Garcia, R. L.: 1999, ‘Testing CERES-Wheat With Free-Air Carbon Dioxide Enrichment (FACE) Experiment Data: CO2 and Water Interactions’, Agron. J. 91 (2), 247–255.

    Article  Google Scholar 

  • USDA: 1994, ‘State Soil Geographic (STATSGO) Data Base Data Use Information’, U.S. Dept. of Agric., Soil Conser. Serv., National Soil Survey Center. Misc. Publ. No. 1392.

    Google Scholar 

  • Wu Y., Sakamoto, C. M., and Botner, D. M.: 1989, ‘On the Application of the CERES-Maize Model to the North China Plain’, Agric. For. Meteorol. 49, 9–22.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tsvetsinskaya, E.A., Mearns, L.O., Mavromatis, T., Gao, W., McDaniel, L., Downton, M.W. (2003). The Effect of Spatial Scale of Climatic Change Scenarios on Simulated Maize, Winter Wheat, and Rice Production in the Southeastern United States. In: Mearns, L.O. (eds) Issues in the Impacts of Climate Variability and Change on Agriculture. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1984-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1984-1_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6420-2

  • Online ISBN: 978-94-017-1984-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics