Skip to main content

Genetics and marine pollution

  • Chapter
Marine Genetics

Part of the book series: Developments in Hydrobiology ((DIHY,volume 144))

  • 403 Accesses

Abstract

The development of cytogenetic methods applied to cells and tissues of marine invertebrates has been hampered by (1) a lack of in vitro cell lines, (2) inadequate karyotypic information (partly as a result of too few workers chasing too many organisms), and (3) the failure of their chromosomes to band satisfactorily. Compared to mammalian cytogenetics, our knowledge of marine invertebrates lags behind by several decades. With the current concern about mutagens in the marine environment, and the recognition that the cells of marine species have sensitivities to DNA-damaging agents similar to those of higher organisms, there is a need for methods which can be used (a) in environmental monitoring and (b) to screen potentially harmful substances in the laboratory. In the absence of in vitro cell lines, embryos and larvae have been used to provide a supply of dividing cells for mutation studies, although the advent of molecular methods has now brought with it the means to detect DNA damage without any need for the cells to be in a dividing state. Moreover, the use of FISH (Fluorescence In Situ Hybridisation) now makes it possible to study numerical and structural chromosomal aberrations with far greater accuracy than was previously possible. A new marine genotoxicity assay is described, based on the embryos and larvae of a tube-dwelling polychaete worm (Pomatoceros lamarkii), suitable for both laboratory studies and field monitoring. This new Pomatoceros assay provides, at the same time, a useful model for studying the consequences of adult exposure on the offspring. A novel application of marine cytogenetic research is the study of the evolutionary adaptations of invertebrates living in naturally polluted extreme environments viz. deep sea hydrothermal vents, which are typified by high levels of toxic heavy metals and radionuclides, substances known to inflict damage to DNA. Given these new methodological and conceptual advances, it is predicted that our understanding of the role played by mutation in the marine environment, both in an evolutionary and toxicological context, will increase dramatically over the next decade.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Accomando, R., A. Viarengo, R. Bordone, M. Taningher, L. Canesi & M. Orunesu, 1991. A rapid method for detecting DNA strand breaks in Mytilus galloprovincialis Lam. induced by genotoxic xenobiotic chemicals. Int. J. Biochem. 23: 227–229.

    Article  PubMed  CAS  Google Scholar 

  • Ahnstrom, G. & K. Erixon, 1973. Radiation induced strand breakage in DNA from mammalian cells. Int. J. radiat. Biol. 23: 285–289.

    Google Scholar 

  • Anderson, S. L., J. E. Hose & J. R. Knezovich, 1994. Genotoxic and developmental effects in sea urchins are sensitive indicators of effects of genotoxic chemicals. Envir. Toxicol. Chem. 13: 1033–1041.

    Article  CAS  Google Scholar 

  • Atienzar, F., R. Child, A. Evenden, A. N. Jha, D. Sawa, C. Walker & M. H. Depledge, 1998. Application of the arbitrarily primed polymerase chain reaction for the detection of DNA damage. Mar. envir. Res. 46: 331–335.

    Google Scholar 

  • Bauman, J. G. J., J. Wiegant, P. Borst & P. Van Duijn, 1980. A new method for fluorescence microscopical localisation of specific DNA sequences by in situ hybridisation of fluorochrome-labeled RNA. Exp. Cell Res. 138: 485–490.

    Google Scholar 

  • Bayne, B. L., 1976. Marine mussels: their ecology and physiology. Cambridge University Press, London.

    Google Scholar 

  • Bihari, N., R. Batel & R. K. Zahn, 1992. Fractionation of DNA from marine invertebrate, (Mytilus galoprovincialis) hemolymph by alkaline elution. Comp. Biochem. Physiol. 102B: 419–424.

    Google Scholar 

  • Boer, J. G., H. L. Erfle, D. Walsh, J. Holcroft & B. W. Glickman, 1996. The use of lad transgenic mice in genetic toxicology. In Pfeifer, G. F. (ed.), Technologies for Detection of DNA Damage and Mutations. Plenum Press, New York: 411–429.

    Google Scholar 

  • Bolognesi, C., M. Panini, P. Roggieri, C. Ercolini & C. Pellegrino, 1992. Carcinogenic and mutagenic pollutants: impact on marine organisms. Map. Tech. Rep. Ser. 69: 113–121.

    Google Scholar 

  • Burgeot, T., F. Galgani & E. His, 1995. The micronucleus assay in Crassostrea gigas for the detection of seawater genotoxicity. Mutat. Res. 342: 125–140.

    Google Scholar 

  • Carter, S. B., 1967. Effects of cytochalasins on mammalian cells. Nature 213: 261–264.

    Article  PubMed  CAS  Google Scholar 

  • Cornet, M., 1993. A short-term method for chromosome preparation from somatic tissues of adult mussel (Mytilus edulis). Experientia 49: 87–90.

    Article  Google Scholar 

  • Dixon, D. R., 1982. Aneuploidy in mussel embryos (Mytilus edulis L.) originating from a polluted dock. Mar. Biol. Letts. 3: 155161.

    Google Scholar 

  • Dixon, D. R., 1985. Pomatoceros triqueter: a test system for environmental mutagenesis. In Bayne, B. L. (ed.), The Effects of Stress and Pollution on Marine Animals. Praeger Publishers, New York: 205–214.

    Google Scholar 

  • Dixon, D. R. & K. R. Clarke, 1982. Sister chromatid exchange - a sensitive method for detecting damage caused by exposure to environmental mutagens in the chromosomes of adult Mytilus edulis. Mar. Biol. Letts. 3: 163–172.

    CAS  Google Scholar 

  • Dixon, D. R., L. R. J. Dixon, P. L. Pascoe & J. T. Wilson, 1998b. Chromosome numbers and genome size in deep-sea hydrothermal vent organisms. InterRidge News 7: 20–22.

    Google Scholar 

  • Dixon, D. R. & N. Flavell, 1986. A comparative study of the chromosomes of Mytilus edulis and Mytilus galloprovincialis. J. mar. biol. Ass. U.K. 66: 219–228.

    Article  Google Scholar 

  • Dixon, D. R. & I. R. B. McFadzen, 1987. Heterochromatin in the interphase nuclei of the common mussel Mytilus edulis L. J. exp. mar. Biol. Ecol. 112: 1–9.

    Article  Google Scholar 

  • Dixon, D. R. & R. L. Pascoe, 1994. Mussel eggs as indicators of mutagen exposure in coastal and estuarine marine environments. In Sutcliffe, D. W. (ed.), Water Quality and Stress Indicators in Marine and Freshwater Systems: Linking Levels of Organisation. Freshwater Biological Association, Cumbria: 124–137.

    Google Scholar 

  • Dixon, D. R., P. L. Pascoe & L. R. J. Dixon, 1998a. Karyotypic differences between two species of Pomatoceros, P. triqueter and P larmarckii ( Polychaeta: Serpulidae). J. mar. biol. Ass. U.K. 78: 1–14.

    Article  Google Scholar 

  • Dixon, D. R. & D. Pollard, 1985. Embryo abnormalities in the periwinkle, Littorina saxatilis, as indicators of stress in polluted marine environments. Mar. Poll. Bull. 16: 29–33.

    Article  Google Scholar 

  • Dixon, D. R. & H. Prosser, 1986. An investigation of the genotoxic effects of an organotin antifouling compound (bis(trybutyltin)oxide) on the chromosomes of the edible mussel, Mytilus edulis. Aquat. Toxicol. 8: 185–195.

    CAS  Google Scholar 

  • Dixon, D. R., J. T. Wilson, P. L. Pascoe & J. M. Parry, 1999. Anaphase aberrations in the embryos of the marine tubeworm Pomatoceros lamarckii (Polychaeta: Serpulidae): a new in vivo test assay for detecting aneugens and clastogens in the marine environment. Mutagenesis 14: 375–383.

    Google Scholar 

  • Drouin, R. et al., 1996. Cupric ion/ascorbate/hydrogen peroxide-induced DNA damage: DNA-bound copper ion primarily induces hase modification. Free Radic. Biol. Med. 21: 261–273.

    Article  PubMed  CAS  Google Scholar 

  • Everaarts, J. M., 1995. DNA integrity as a biomarker of marine pollution: strand breaks in seastar (Asterias rubens) and dab (Limanda limanda). Mar. Poll. Bull. 31: 431–438.

    Google Scholar 

  • Fenech, M. and A. A. Morley, 1985. Cytokinesis-block micronucleus method in human lymphocytes: effect on aging and low-dose x-irradiation. Cytobios 43: 233–246.

    PubMed  CAS  Google Scholar 

  • Fenech, M. & S. Neville, 1992. Conversion of excision-repairable DNA lesions to micronuclei within one cell-cycle in human lymphocytes. Envir. Mol. Mutagen. 19: 27–36.

    Article  CAS  Google Scholar 

  • Gardner, G. R., R. J. Pruell & A. R. Malcolm, 1992. Chemical induction of tumors in oysters by a mixture of aromatic and chlorinated hydrocarbons, amines and metals. Mar. envir. Res. 34: 59–63.

    Article  CAS  Google Scholar 

  • Gossen, J. A., W. J. F. De Leeuw, C. H. T. Tan, E. C. Zwarhoff, F. Berends, P. H. M. Lohman, D. L. Knook and J. Vijg, 1989. Efficient rescue of integrated shuttle vectors from transgenic mice: A model for studying mutation in vivo. Proc. natnl. Acad. Sci. U.S.A. 86: 7971–7975.

    Article  CAS  Google Scholar 

  • Govan, H. L., Y. Vallesayoub & J. Braun, 1990. Fine mapping of DNA damage and repair in specific genomic segments. Nucl. Acids Res. 18: 3823–3830.

    Article  PubMed  CAS  Google Scholar 

  • Gupta, R. C. & K. Randerath, 1988. Analysis of DNA adducts by 32P-postlabelling and Thin Layer Chromatography. In Friedberg, E. & P. H. Hanawalt (eds), DNA Repair. Marcel Dekker, New York: 399–418.

    Google Scholar 

  • Hagmar, L. et al., 1994. Cancer risk in humans predicted by increased levels of chromosomal aberrations in lymphocytes–nordic study group on the health risk of chromosome damage. Cancer Res. 54: 2919–2922.

    PubMed  CAS  Google Scholar 

  • Harrison, F. L. & I. M. Jones, 1982. An in vivo sister chromatid exchange assay in the larvae of the mussel Mytilus edulis -response to three mutagens. Mutat. Res. 105: 235–242.

    CAS  Google Scholar 

  • Harvey, J. S., B. P. Lyons, M. Waldock & J. M. Parry, 1997. The application of the 32P-postlabelling assay to aquatic biomonitoring. Mutat. Res. 378: 77–88.

    Google Scholar 

  • Hassold, T. D., 1986. Chromosome abnormalities in human reproductive wastage. Trends Genet. 2: 105–110.

    Article  Google Scholar 

  • Heddle, J. A., 1973. A rapid in vivo test for chromosome damage. Mutat. Res. 18: 187–192.

    Google Scholar 

  • Hook, E. B., 1983. Contribution of chromosome abnormalities to human morbidity and mortality and some comments upon surveillance of chromosome mutation rate. Mutat. Res. 114: 389–423.

    Article  PubMed  CAS  Google Scholar 

  • Hose, J. E. & H. W. Puffer, 1983. Cytologic and cytogenetic anomalies induced in purple sea urchin embryos (Strongylocentrotus purpuratus S.) by parental exposure to benzo(a)pyrene. Mar. Biol. Letts. 4: 87–95.

    CAS  Google Scholar 

  • Hose, J. E., H. W. Puffer, P. S. Oshida & S. M. Bay, 1983. Developmental and cytogenetic abnormalities induced in the purple sea urchin by environmental levels of benzo(a)pyrene. Arch. envir. Contam. Toxicol. 12: 319–325.

    Google Scholar 

  • Jha, A. N., T. H. Hutchinson, J. M. Mackay, B. M. Elliott & D. R. Dixon, 1996. Development of an in vivo genotoxicity assay using the marine worm Platynereis dumerilii ( Polychaeta: Neridae). Mutat. Res. 359: 141–150.

    Google Scholar 

  • John, H., M. Birnstiel & K. Jones, 1969. RNA-DNA hybrids at the cytological level. Nature 223: 582–587.

    Article  PubMed  CAS  Google Scholar 

  • Jones, I. M. & F. L. Harrison, 1987. Variability in the frequency of sister-chromatid exchange in larvae of Mytilus edulis: implications for field monitoring. J. exp. mar. Biol. Ecol. 113: 283–288.

    Google Scholar 

  • Klaude, M.. S. Eriksson, J. Nygren & G. Ahnstrom, 1996. The comet assay: mechanisms and technical considerations. Mutat. Res. 363: 89–96.

    Google Scholar 

  • Kohler, S. W., G. S. Provost, A. Fieck, P. L. Kretz, W. O. Bullock, D. L. Putman, J. A. Sorge & J. M. Short, 1991. Analysis of spontaneous and induced mutations in transgenic mice using a lambda ZAPllacl shuttle vector. Envir. Mol. Mutagen. 18: 316–321.

    Article  CAS  Google Scholar 

  • Kohn, K. W., C. K. Erickson, A. G. Ewig & L. A. Zwelling, 1976. Fractionation of DNA from mammalian cells by alkaline elution. Biochemistry 15: 4629–4637.

    Article  PubMed  CAS  Google Scholar 

  • Korenberg, J. R. and E. F. Freelander, 1974. Giemsa technique for the detection of sister chromatid exchanges. Chromosoma 48: 355. Li, G. and D. Hedgecock, 1998. Genetic heterogeneity, detected by

    Google Scholar 

  • PCR-SSCP, among samples of larval pacific oysters (Crassostrea gigas) supports the hypothesis of large variance in reproductive success. Can. J. Fish. aquat. Sci. 55: 1025–1033.

    Google Scholar 

  • Levan, G. & F. Mitelman, 1977. Chromosomes and the aetiology of cancer. In de la Chapelle, A. & M. Sorsa (eds), Chromosomes Today. Elsevier. Amsterdam: 363–371.

    Google Scholar 

  • Martinez-Lage, A., A. Gonzalez-Tizon & J. Mendez, 1994. Characteristics of different chromatin types in Mytilus galloprovincialis L. after C-banding, fluorochromc and restriction-endonuclease treatments. Heredity 72: 242–249.

    Article  Google Scholar 

  • Mix, M. C., 1986. Cancerous diseases in aquatic animals and their association with environmental pollutants: a critical literature review. Mar. envir. Res. 20: 1–141.

    Google Scholar 

  • Moore, M. N., D. M. Lowe, D. R. Livingstone & D. R. Dixon, 1986. Molecular and cellular indices of pollutant effects and their use in environmental impact assessment. Wat. Sci. Tech. 18: 223–232.

    CAS  Google Scholar 

  • Nacci, D. E., S. Cayula and E. Jackim, 1996. Detection of DNA damage in individual cells from marine organisms using the single cell gel assay. Aquat. Toxicol. 35: 197–210.

    Article  CAS  Google Scholar 

  • Nacci, D. E. & S. Nelson, 1992. Application of the alkaline unwinding assay to detect DNA strand breaks in marine bivalves. Mar. envir. Res. 33: 38–100.

    Google Scholar 

  • Olive, R. L. & J. R. Banath, 1993. Induction and rejoining of radiation-induced DNA single-strand breaks: `tail moment’ as a function of position in the cell cycle. Mutat. Res. 294: 275–283.

    Article  PubMed  CAS  Google Scholar 

  • Olive, P. L., J. P. Banath and R. E. Durand, 1990. Heterogeneity in radiation-induced DNA damage and repair in tumour and normal cells measured using the `comet’ assay. Radiation Res. 122: 8694.

    Article  Google Scholar 

  • Olive, P. L., D. Wlodek & J. P. Banath, 1991. DNA double-strand breaks measured in individual cells subjected to gel electrophoresis. Cancer Res. 51: 4671–4676.

    Google Scholar 

  • Ostling, O. & K. J. Johanson, 1984. Microelectrophoretic study of radiation-induced DNA damage in individual mammalian cells. Biochem. Res. Communicat. 123: 291–298.

    Google Scholar 

  • Pardue, M. L. & J. G. Gall, 1969. Molecular hybridisation of radioactive DNA to the DNA of cytological preparations. Proc. natnl. Acad. Sci. U.S.A. 64: 600–604.

    Article  CAS  Google Scholar 

  • Pascoe, P. L., S. J. Patton, R. Critcher & D. R. Dixon, 1995. Robertsonian polymorphism in the marine gastropod Nucella lapillus: advances in karyology using rDNA loci and NORs. Chromosoma 104: 455–460.

    Google Scholar 

  • Perry, P. and S. Wolff, 1974. New giemsa method for the differential staining of sister chromatids. Nature 251: 156.

    Article  PubMed  CAS  Google Scholar 

  • Pesch, G. G., C. E. Pesch & A. R. Malcolm, 1981a. Neanthes arenaceodentata, a cytogenetic model for marine genetic toxicology. Envir. Mutagen. 3: 386–387.

    Google Scholar 

  • Pesch, G. G., C. E. Pesch & A. R. Malcolm, 1981 h. Neanthes arenaceodentata, a cytogenetic model for marine genetic toxicology. Aquat. Toxicol. 1: 301–311.

    Google Scholar 

  • Russo, A., G. Priante & A. M. Tommasi, 1996. PRINS localization of centromeres and telomeres in micronuclei indicates that in mouse splenocytes chromatid non-disjunction is a major mechanism of aneuploidy. Mutat. Res. 372: 173–180.

    Article  PubMed  CAS  Google Scholar 

  • Savage, J. R. K., 1993. Update on target theory as applied to chromosome aberrations. Envir. Mol. Mutagen. 22: 198–207.

    Google Scholar 

  • Schmid, W., 1977. The micronucleus test. In Kilbey, B. J., M. Legator, W. Nichols & C. Ramel (eds), Handbook of Mutagenicity Test Procedures. Elsevier, Amsterdam: 235–242.

    Google Scholar 

  • Shugart, L. R. & C. W. Theodakaris, 1994. Environmental genotoxicity: probing the underlying mechanisms. Envir. Health Perspect. 102: 13–17.

    Google Scholar 

  • Singh, N. P., M. T. McCoy, R. R. Tice & E. L. Schneider, 1988. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 175: 184–191.

    Article  PubMed  CAS  Google Scholar 

  • Sole, M., C. Porte, X. Biosca, C. L. Mitchelmore, J. K. Chipman, D. R. Livingstone and J. Albaiges, 1996. Effects of the `Aegean Sea’ oil spill on biotransformation enzymes, oxidative stress and DNA-Adducts in digestive gland of the mussel (Mytilus edulis L). Comp. Biochem. Physiol. 113B: 257–265.

    Google Scholar 

  • Stein, J. E., W. L. Reichert, M. Nishimoto & U. Varanasi, 1990. Overview of studies on liver carcinogenesis in English Sole from Puget Sound — evidence for a xenobiotic chemical etiology. Sci. total Envir. 94: 51–69.

    Google Scholar 

  • Steinert, S. A., 1996. Contribution of apoptosis to observed DNA damage in mussel cells. Mar. envir. Res. 42: 253–259.

    Article  CAS  Google Scholar 

  • Taylor, J. H., P. S. Woods & W. L. Hughes, 1957. The organisation and duplication of chromosomes as revealed by autoradiographic studies using tritium-labelled thymidine. Proc. natnl. Acad Sci. U.S.A. 43: 122–128.

    Article  CAS  Google Scholar 

  • Theodorakis, C. W., S. J. Dsurney & L. R. Shugart, 1994. Detection of genotoxic insult as DNA strand breaks in fish blood cells by agarose-gel electrophoresis. Envir. Toxicol. Chem. 13: 1023–1031.

    Google Scholar 

  • Thorson, G., 1946. Reproduction and larval development of Danish marine bottom invertebrates with special reference to the planktonic larvae in the sound (Oresund). Medd. Komm. Haverundersog (ser. Plankton ) 4: 170–173.

    Google Scholar 

  • Tsutsui, T., H. Maizumi, J. A. McLachlan & J. C. Barrett, 1983. Aneuploidy induction and cell transformation by diethylstilbestrol. Cancer Res. 43: 3814–3821.

    PubMed  CAS  Google Scholar 

  • Venier, P. & S. Canova, 1996. Formation of DNA adducts in the gill tissue of Mytilus galloprovincialis treated with benzoapyrene. Aquat. Toxicol. 34: 119–131

    Article  CAS  Google Scholar 

  • Viarengo, A., L. Canesi, M. Pertica & D. R. Livingstone, 1991. Seasonal variations in the antioxidant defence systems and lipid peroxidation of the digestive gland of mussels. Comp. Biochem. Physiol. 100B: 187–190.

    Google Scholar 

  • Vijg, J. & G. R. Douglas, 1996. Bacteriophage lambda and plasmid lacZ transgenic mice for studying mutations in vivo. In Pfeifer, G. F. (ed.), Technologies for Detection of DNA Damage and Mutations. Plenum Press, New York: 391–410.

    Google Scholar 

  • Vukmirovik, M., N. Bihari, R. K. Zahn, W. E. G. Muller & R. Batel, 1994. DNA damage in marine mussel Mytilus galloprovincialis as a biomarker of environmental contamination. Mar. Ecol. Prog. Ser. 109: 165–171.

    Article  Google Scholar 

  • Welsh, J., D. Ralph and M. McClelland, 1995. In Innis, M. A., D. H. Gelfand and J. J. Sninsky (eds), PCR Strategies. Academic Press, London: 249–276.

    Book  Google Scholar 

  • Wilson, J. T., P. L. Pascoe, J. M. Parry & D. R. Dixon, 1998. Evaluation of the comet assay as a method for the detection of DNA damage in the cells of a marine invertebrate, Mytilus edulis L ( Mollusca: Pelecypoda). Mutat. Res. 399: 87–95.

    Google Scholar 

  • Wrisberg, M. N., C. M. Bilbo & H. Spliid, 1992. Induction of micronuclei in hemocytes of Mytilus edulis and statistical analysis. Ecotoxicol. envir. Safety 23: 191–205.

    Google Scholar 

  • Zakour, H. R., M. L. Landolt & R. M. Kocan, 1984. Sister chromatid exchange analysis in cultured peripheral blood leukocytes of the coldwater marine fish. Mar. envir. Res. 14: 499–500.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dixon, D.R., Wilson, J.T. (2000). Genetics and marine pollution. In: Solé-Cava, A.M., Russo, C.A.M., Thorpe, J.P. (eds) Marine Genetics. Developments in Hydrobiology, vol 144. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2184-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2184-4_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5387-9

  • Online ISBN: 978-94-017-2184-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics