Skip to main content

Abstract

Transgenic plants offer many potential advantages as production systems for making human biopharmaceuticals. Subunit vaccines are especially promising candidates for this technology since it may also be possible to administer the recombinant protein vaccinogen orally, in edible plant products. In order to study this promising approach we have established a model system to express the major glycoprotein, gB, of human cytomegalovirus (HCMV) in the seeds of tòbacco plants. A novel expression vector was developed incorporating regulatory sequences of glutelin, the major rice seed storage protein, to direct synthesis of recombinant glycoprotein B to seeds. Following transformation, selected calli and subsequently mature plants were regenerated. Screening of genomic DNA by PCR amplification and Southern blotting showed that 71% harboured the gB coding sequence. Specific immunoassays were established using neutralizing and non-neutralizing monoclonal antibodies specific for gB. These revealed that protein extracts from seeds of positive plants produced antigenic gB at levels ranging from 70–146 ng/mg extracted protein. In addition, similarity with native gB produced in HCMV-infected cells was demonstrated by inhibition of immunofluorescence on HCMV-infected human fibroblasts. Although several mammalian proteins have been expressed in tobacco, localization of the proteins within transgenic tissues has not been extensively examined. In order to identify the site(s) of recombinant gB deposition in mature tobacco seeds, we used immunogold labelling and electron microscopy. We observed specific labelling for gB in the endosperm of transgenic seeds, with gB localized almost exclusively in protein storage vesicles. This was found equally in seeds that were freshly harvested and in seeds that had been stored at room temperature for several months. Collectively, our results demonstrate that this large and complex viral glycoprotein can be expressed in plants in a highly tissue-specific manner. They also show that biologically significant structural features, including viral neutralizing epitopes, are retained in this heterologous system, and that the gB is sorted within seeds in a manner similar to plant storage proteins. These data provide further evidence to support the suitability of plants for producing recombinant proteins of potential clinical relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adeli K and Altosaar I, 1984. Compartmentalization of seed reserve proteins-proposed discriminatory factors. FEBS Lett, 178: 193–198

    Article  CAS  Google Scholar 

  • Adler SP, Starr SE, Plotkin SA, Hempfling SH, Buis J, Manning ML and Best AM, 1995. Immunity induced by a primary human cytomegalovirus infection protects against secondary infection among women of childbearing age. J Infect Dis, 171: 26–32

    Article  PubMed  CAS  Google Scholar 

  • Adler SP, Plotkin SA, Gonczol E, Cadoz M, Meric C, Wang JB, Dellamonica P, Best AI, Zahnradnik J, Pincus S, Berencsi K, Cox WI and Gyulai Z, 1999. A canarypox vector expressing cytomegalovirus (CMV) glycoprotein B primes for antibody responses to a live attenuated CMV vaccine ( Towne ). J Infect Dis, 180: 843–846

    Google Scholar 

  • Albright LM, Yanofsky MF, Leroux B, Ma DQ and Nester EW, 1987. Processing of the T-DNA of Agrobacterium tumefaciens generates border nicks and linear, single-stranded T-DNA. J Bacteriol, 169: 1046–1055

    PubMed  CAS  Google Scholar 

  • Bewley JD and Black M, 1994. Seed development and maturation. In Seeds: Physiology of development and germination. Eds. Bewley JD and Black M. Plenum Press, New York, pp 35–115

    Google Scholar 

  • Britt WJ, 1996. Vaccines against cytomegalovirus: Time to test. Trends in Microbiol, 4: 34–38

    Article  CAS  Google Scholar 

  • Britt WJ and Vugler LG, 1989. Processing of the gp55–116 envelope glycoprotein complex (gB) of human cytomegalovirus. J Virol, 63: 403–410

    PubMed  CAS  Google Scholar 

  • Britt WJ and Mach M, 1996. Human cytomegalovirus glycoproteins. Intervirol, 39: 401–412

    CAS  Google Scholar 

  • Cabanes-Macheteau M, Fischette-Lainé A-C, Loutier-Bourhis, C, Lange C, Vine ND, Ma JKC, Lerouge P and Fay L, 1999. N-Glycosylation of a mouse IgG expressed in transgenic tobacco plants. Glycobiology, 9: 365–372

    Article  PubMed  CAS  Google Scholar 

  • Chrispeels MJ and Faye L, 1996. The production of recombinant glycoproteins with defined non-immunogenic glycans. In Transgenic plants: A production system for industrial and pharmaceutical proteins. Eds. Owen MRL and Owen P. John Wiley and Sons Ltd., New York, pp 99–113

    Google Scholar 

  • Coleman CE, Lopes MA, Gillikein JW, Boston RS and Larkins BA, 1995. A defective signal peptide in the maize high-lysine mutant floury-2. Proc Natl Acad Sci USA, 92, 6828–6831

    Article  PubMed  CAS  Google Scholar 

  • Cramer CL, Boothe JG and Oishi KK, 1999. Transgenic plants for therapeutic proteins: Linking upstream and downstream strategies. Curr Top Microbiol Immunol, 240: 95–118

    Google Scholar 

  • Cranage MP, Smith GL, Bell SE, Hart H, Brown C, Bankier AT, Tomlinson P, Barrel(BG and Minson TC, 1988. Identification and expression of a human cytomegalovirus glycoprotein with homology to the Epstein-Barr virus BXLF2 product, varicella-zoster virus gpIII, and herpes simplex virus type I glycoprotein H. J Virol, 62: 1416–1422

    Google Scholar 

  • Crapnell K, Zanjani ES, Chaudhuri A, Ascensao JL, St Jeor S and Maciejewski JP, 2000. In vitro infection of megakaryocytes and their precursors by human cytomegalovirus. Blood, 95: 487–493

    PubMed  CAS  Google Scholar 

  • Datla RSS, Hammerlindl JK, Panchuk B, Pelcher LE and Keller W, 1992. Modified plant transformation vectors with the wild-type gene encoding NPTII. Gene, 122: 383–384

    Article  PubMed  CAS  Google Scholar 

  • Dickinson CD, Floener L, Lilley G and Nielson N, 1987. Self-assembly of proglycinin and hybrid proglycinin synthesized in vitro from eDNA. Proc Natl Acad Sci USA, 84: 5525–5529

    Article  PubMed  CAS  Google Scholar 

  • Fish KN, Soderberg-Naucler C and Nelson JA, 1998. Steady-state plasma membrane expression of human cytomegalovirus gB is determined by the phosphorylation state of Ser900. J Virol, 72: 6657–6664

    CAS  Google Scholar 

  • Fowler KB, Stagno D, Pass RF, Britt WJ, Boll TJ and Alford CA, 1992. The outcome of congenital cytomegalovirus infection in relation to maternal antibody status. N Engl J Med, 326: 663–667

    Article  PubMed  CAS  Google Scholar 

  • Frey SE, Harrison C, Pass RF, Yang E, Boken D, Sekulovich R, Percell S, Izu A, Hirabayashi S, Burke RL and Duliege A-M, 1999. Effects of antigen dose and immunization regimens on antibody responses to a cytomegalovirus glycoprotein B subunit vaccine. J Infect Dis, 180: 1700–1703

    Article  PubMed  CAS  Google Scholar 

  • Ganz PR, Dudani A, Tackaberry E, Sardana R, Sauder C, Cheng X and Altosaar I, 1995. Plants as factories for producing human blood proteins. Can Soc Trans Med Bull, 7: 112–121

    Google Scholar 

  • Ganz PR, Dudani AK, Tackaberry ES, Sardana R, Sauder C, Cheng X and Altosaar I, 1996. Expression of human blood proteins in transgenic plants: the cytokine GM-CSF as a model protein. In Transgenic plants: A production system for industrial and pharmaceutical proteins. Eds. Owen MRL and Owen P. John Wiley and Sons Ltd., New York, pp 281–97

    Google Scholar 

  • Hag TA, Mason H, Clements JD and Arntzen CJ, 1995. Oral immunization with a recombinant bacterial antigen produced in transgenic plants. Science, 268: 714–717

    Article  Google Scholar 

  • Herman E and Larkins B, 1999. Protein storage bodies and vacuoles. Plant Cell, 11: 601–613

    PubMed  CAS  Google Scholar 

  • Ho M, 1991. Cytomegalovirus: Biology and infection. 2nd Ed. Plenum Medical Book Co., New York, USA

    Google Scholar 

  • Hoffman LM, Donaldson DD and Herman EM, 1988. A modified storage protein is synthesized, processed, and degraded in the seeds of transgenic plants. Plant Mol Biol, 11: 717–729

    Article  CAS  Google Scholar 

  • Hohl I, Robinson DG, Chrispeels MJ and Hinz G, 1996. Transport of storage proteins to the vacuole is mediated by vesicles without a clathrin coat. J Cell Sci, 109: 2539–2550

    PubMed  CAS  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann, NL, Eichholtz D, Rogers SG and Fraley RT, 1995. A simple and general method for transferring genes into plants. Science, 227: 1229–1231

    Google Scholar 

  • Iglesias VA, Moscone EA, Neuhuber F, Michalowski S, Phelan T, Spiker S, Matzke M and Matzke AJ, 1997. Molecular and cytogenic analyses of stably and unstably expressed transgenic loci in tobacco. Plant Cell, 9: 1251–1264

    PubMed  CAS  Google Scholar 

  • Jenkins N, Parekh RB and James DC, 1996. Getting the glycosylation right: Implications for the biotechnology industry. Nat Biotech, 14: 975–981

    Google Scholar 

  • Kari B, Liu Y-N, Lussenhop N, Stinski M and Gehrz R, 1990. Structure and composition of a family of human cytomegalovirus glycoprotein complexes designated gC-1. J Gen Virol, 71: 2673–2680

    Article  PubMed  CAS  Google Scholar 

  • Kari B and Gehrz R, 1991. Biochemical and immunological analysis of discontinuous epitopes in the family of human cytomegalovirus glycoprotein complexes designated gC-I. J Gen Virol, 72: 1975–1983

    Article  PubMed  CAS  Google Scholar 

  • Kusnadi AR, Nikolov ZL and Howard JA, 1997. Production of recombinant proteins in transgenic plants: Practical considerations. Biotech and Bioengin, 56: 473–484

    Google Scholar 

  • Landini MP, 1992. Antibody responses to human cytomegalovirus proteins. Rev Med Virol, 2: 63–72

    Article  CAS  Google Scholar 

  • Larose Y, Tackaberry ES and Brodeur BR, 1991. Human monoclonal antibodies to cytomegalovirus recognize viral epitopes on the surface of viral-infected cells. Human Antibod Hybridomas, 2: 65–73

    Google Scholar 

  • Leisy DJ, Hnilo J, Zhao Y and Okita TW, 1990. Expression of a rice glutelin promoter in transgenic tobacco. Plant Mol Biol, 14: 41–50

    Article  PubMed  CAS  Google Scholar 

  • Lerouge P, Cabanes-Macheteau M, Rayon C, Fischette-Lainé A-C, Gomord V and Faye L, 1998. N-glycoprotein biosynthesis in plants: Recent developments and future trends. Plant Mol Biol, 38: 31–48

    Google Scholar 

  • Lucas KG, Sun Q, Burton RL, Tilden A, Vaughan WP, Carabasi M, Salzman D and Ship A, 2000. A phase I-II trial to examine the toxicity of CMV- and EBV-specific cytotoxic T lymphocytes when used for prophylaxis against EBV and CMV disease in recipients of CD34-selected IT cell-depleted stem cell transplants. Hum Gene Ther, 11: 1453–1493

    Article  PubMed  CAS  Google Scholar 

  • Manganaro M, Ogra PL. and Ernst PB, 1994. Oral immunization: Turning fantasy into reality. Intl Arch Allergy Immunol, 103: 223–233

    Google Scholar 

  • Mason HS, Lam DM and Arntzen CJ, 1992. Expression of hepatitis B surface antigen in transgenic plants. Proc Natl Acad Sci USA, 89: 11745–11749

    Article  PubMed  CAS  Google Scholar 

  • Mason HS, Ball JM, Shi J-J, Jiang X, Estes MK and Arntzen CJ, 1996. Expression of Norwalk virus capsid protein in transgenic tobacco and potato and its oral immunogenicity in mice. Proc Natl Acad Sci USA, 93: 5335–5340

    Article  PubMed  CAS  Google Scholar 

  • Mason HS, Haq TA, Clements JD and Arntzen CJ, 1998. Edible vaccine protects mice against Escherichia coli heat-labile enterotoxin (LT): potatoes expressing a synthetic LT-B gene. Vaccine, 16: 1336–1348

    Article  PubMed  CAS  Google Scholar 

  • Miller EA and Anderson MA, 1999. Uncoating the mechanisms of vacuolar protein transport. Trends Plant Sci, 4: 46–48

    Article  Google Scholar 

  • Mitchell VS, Philipose NM, Sanford JP, 1993. The children’s vaccine initiative - Achieving the vision. Institute of Medicine, National Academy Press, Washington.

    Google Scholar 

  • Moffat AS, 1995. Exploring transgenic plants as a new vaccine source. Science, 268: 658–660

    Article  PubMed  CAS  Google Scholar 

  • Neuhaus JM and Rogers JC, 1998. Sorting of proteins to vacuoles in plant cells. Plant Mol Biol, 38: 127–144

    Article  PubMed  CAS  Google Scholar 

  • Norais N, Hall JA, Gross L, Tang D, Kaur S, Chamberlain S, Burke RL and Marcus F, 1996. Evidence for a phosphorylation site in cytomegalovirus glycoprotein gB. J Virol, 70: 57165719

    Google Scholar 

  • Okita TW, Hwang YS, Hnilo J, Kim WT, Aryan AP, Larson R and Krishnan HB, 1989. Structure and expression of the rice glutelin multigene family. J Biol Chem, 264: 125731 2581

    Google Scholar 

  • Pande H, Campo K, Tanamachi B, Forman S and Zaia J, 1995. Direct immunization of mice with plasmid DNA encoding the tegument protein pp65 (ppUL83) of human cytomegalovirus induces high levels of circulating antibody to encoded protein. Scand J Infect Dis, 99: 117–120

    CAS  Google Scholar 

  • Pass RF, Duliege A-M, Boppana S, Sekulovich R, Percell S, Britt W and Burke RL, 1999. J Infect Dis, 180: 970–975

    Article  PubMed  CAS  Google Scholar 

  • Pen J, 1996. Comparison of host systems for the production of recombinant proteins. In Transgenic plants: A production system for industrial and pharmaceutical proteins. Eds. Owen, MRL and Owen P. John Wiley and Sons Ltd., New York, pp. 149–167

    Google Scholar 

  • Plotkin SA, 1999. Cytomegalovirus vaccine. Am Heart J, 138: S484–487

    Article  PubMed  CAS  Google Scholar 

  • Qadri I, Navarro D, Paz P and Pereira L, 1992. Assembly of conformation-dependent neutralizing domains on glycoprotein B of human cytomegalovirus. J Gen Virol, 73: 2913 2921

    Google Scholar 

  • Radsak K, Eickmann M, Mockenhaupt T, Bogner E, Kern H, Eis-Hiibinger A and Reschke M, 1996. Retrieval of human cytomegalovirus glycoprotein B from the infected cell surface for virus envelopment. Arch Virol, 141: 557–572

    Article  PubMed  CAS  Google Scholar 

  • Richter L and Kipp PB, 1999. Transgenic plants as edible vaccines. Curr Top Microbiol Immunol, 240: 159–176

    PubMed  CAS  Google Scholar 

  • Riddell SR, Watanabe KS, Goodrich JM, Li CR, Agha ME and Greenberg PD, 1992. Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science, 257: 238–241

    Article  PubMed  CAS  Google Scholar 

  • Robert LS, Donaldson PA, Ladaique C, Altosaar I, Arnison PG and Fabijanski SF, 1989. Antisense RNA inhibition of (3-glucuronidase gene expression in transgenic tobacco plants. Plant Molec Biol, 13: 399–409

    Article  CAS  Google Scholar 

  • Salmon V, Legrand D, Slomianny MC, Yazidi IE, Spik G, Gruber V, Bournat P, Olagnier B, Mison D, Theisen M and Merot B, 1998. Production of human lactoferrin in transgenic plants. Prot Exp Pur, 13: 127–135

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF and Maniatis T, 1989. Molecular cloning: A laboratory manual. 2nd Ed. Cold Spring Harbor, New York

    Google Scholar 

  • Sanchez V, Greis KD, Sztul E and Britt WJ, 2000. Accumulation of virion tegument and envelope proteins in a stable cytoplasmic compartment during human cytomegalovirus replication: characterization of a potential site of virus assembly. J Virol, 74: 975–986

    Article  PubMed  CAS  Google Scholar 

  • Sardana R, Ganz PR, Dudani A, Tackaberry ES, Cheng X and Altosaar I, 1997. Synthesis of recombinant human cytokine GM-CSF in the seeds of transgenic tobacco plants. In Methods in Biotechnology, Vol 3. Eds. Cunningham C and Porter A. Humana Press Inc, Totowa, New Jersey, pp 77–87

    Google Scholar 

  • Schleiss MR, Jensen BN, Bravo NJ and Bernstein DI, 2000. Immunogenicity evaluation of DNA vaccines that target guinea pig cytomegalovirus proteins glycoprotein B and UL83. Viral Immunol, 13: 155–167

    Article  PubMed  CAS  Google Scholar 

  • Scott R, Draper J, Jefferson R, Duty G and Jacob L, 1988. Analysis of gene organization and expression in plants. In Plant genetic transformation and gene expression: A laboratory manual. Eds. Draper J, Scott R and Armitage P. Blackwell Scientific Publications, Oxford, pp 263–339

    Google Scholar 

  • Service RF, 1994. Triggering the first line of defense. Science, 265: 1522–1524

    Article  PubMed  CAS  Google Scholar 

  • Shalaby WSW, 1995. Development of oral vaccines to stimulate mucosal and systemic immunity: barriers and novel strategies. Clin Immunol Immunopath, 74: 127–134

    Article  CAS  Google Scholar 

  • Snydman DR, 1990. Cytomegalovirus immunoglobulins in the prevention and treatment of cytomegalovirus disease. Rev Infect Dis, 12: S839–848

    Article  PubMed  Google Scholar 

  • Spaete RR, Thayer RM, Probert WS, Masiarz FR, Chamberlain SH, Rasmussen L, Merigan TC and Pachl C, 1988. Human cytomegalovirus strain Towne glycoprotein B is processed by proteolytic cleavage. Virology, 167: 207–225

    Article  PubMed  CAS  Google Scholar 

  • Speckner A, Glykofrydes D, Ohlin M and Mach M, 1999. Antigenic domain 1 of human cytomegalovirus glycoprotein B induces a multitude of different antibodies which, when combined, results in incomplete virus neutralization. J Gen Virol, 80: 2183–2191

    PubMed  CAS  Google Scholar 

  • Stinski MF, Mocarski ES, Thomsen DR and Urbanowski ML, 1979. Membrane glycoprotein and antigens induced by human cytomegalovirus. J Gen Virol, 43: 119–129

    Article  PubMed  CAS  Google Scholar 

  • Stocchi R, Ward KN, Fanin R, Baccarani M and Apperley JF, 1999. Management of human cytomegalovirus infection and disease after allogeneic bone marrow transplantation. Haematologica, 84: 71–79

    PubMed  CAS  Google Scholar 

  • Tackaberry ES, Hamel J, Larose Y and Brodeur BR, 1993. Anti-idiotypic mimicry of a neutralizing epitope on the glycoprotein B (gB) complex of human cytomegalovirus. J Virol, 67: 6815–6819

    PubMed  CAS  Google Scholar 

  • Tackaberry ES, Hamel J and Brodeur B, 1997. Anti-idiotypic studies of the glycoprotein B (gB, UL55) complex of human cytomegalovirus: Mimicry of a neutralizing epitope and development of diagnostics. In Idiotypes in medicine: Autoimmunity, infection and cancer. Eds. Shoenfeld Y, Kennedy R and Ferrone S. Elsevier Science Publications, Amsterdam, pp 259–68

    Google Scholar 

  • Tackaberry ES, Dudani AK, Prior F, Tocchi M, Sardana R, Altosaar I and Ganz PR, 1999. Development of biopharmaceuticals in plant expression systems: cloning, expression and immunological reactivity of human cytomegalovirus glycoprotein B (UL55) in seeds of transgenic tobacco. Vaccine, 17: 3020–3029

    Article  PubMed  CAS  Google Scholar 

  • Tacket CO, Mason HS, Losonsky G, Clements JD, Levine MM and Arntzen CJ, 1998. Immunogenicity in humans of a recombinant bacterial antigen delivered in a transgenic potato. Nat Med, 4: 607–609

    Article  PubMed  CAS  Google Scholar 

  • Tacket CO, Mason HS, Losonsky G, Estes MK, Levine MM and Arntzen CJ, 2000. Human responses to a novel Norwalk virus vaccine delivered in transgenic potatoes. J Infect Dis, 182: 302–305

    Article  PubMed  CAS  Google Scholar 

  • Thanavala Y, Yang Y-F, Lyons P, Mason HS and Arntzen C, 1995. Immunogenicity of transgenic plant-derived hepatitis B surface antigen. Proc Natl Acad Sci USA, 92: 3358–3361

    Article  PubMed  CAS  Google Scholar 

  • Tooze J, Hollinshead M, Reis B, Radsak K and Kern H, 1993. Progeny vaccinia and human cytomegalovirus particles utilize early endosomal cisternae for their envelopes. Eur J Cell Biol, 60: 163–178

    PubMed  CAS  Google Scholar 

  • Tugizov S, Maidj i E, Xiao J, Zheng Z and Periera L, 1998. Human cytomegalovirus glycoprotein B contains autonomous determinants for vectorial targeting to apical membranes ofpolarized epithelial cells. J Virol, 72: 7374–7386

    PubMed  CAS  Google Scholar 

  • Vitale A and Raikhel NV, 1999. What do proteins need to reach different vacuoles? Trends Plant Sci, 4: 149–155

    Article  PubMed  Google Scholar 

  • Walmsley AM and Arntzen CJ, 2000. Plants for delivery of edible vaccines. Curr Opin Biotechnol, 11: 126–129

    Article  PubMed  CAS  Google Scholar 

  • Walter EA, Greenberg PD, Gilbert MJ, Finch RJ, Watanabe KS, Thomas ED and Riddell SR, 1995. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med, 333: 1038–1044

    Article  PubMed  CAS  Google Scholar 

  • Wang JB, Adler SP, Hempfling S, Burke RL, Duliege A-M, Starr SE and Plotkin SA, 1996. Mucosal antibodies to human cytomegalovirus glycoprotein B occur following both natural infection and immunization with human cytomegalovirus vaccines. J Infect Dis, 174: 387–392

    Article  PubMed  CAS  Google Scholar 

  • Wright KE, Prior F, Sardana R, Altosaar I, Dudani AK, Ganz PR and Tackaberry ES, 2001. Sorting of glycoprotein B from human cytomegalovirus to protein storage vesicles in seeds of transgenic tobacco. Transgenic Res, 10: 177–181

    Article  PubMed  CAS  Google Scholar 

  • Yamashita Y, Shimokata K, Mizuno S, Daikoku T, Tsurumi T and Nishiyama Y, 1996. Calnexin acts as a molecular chaperone during the folding of glycoprotein B of human cytomegalovirus. J Virol, 70: 2237–2246

    PubMed  CAS  Google Scholar 

  • Zambryski P, 1988. Basic processes underlying Agrobacterium mediated DNA transfer to plant cells. Annu Rev Genet, 22: 1–30

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Leisy DJ and Okita TW, 1994. Tissue-specific expression and temporal regulation of the rice glutelin Gt3 gene are conferred by at least two spatially separated cis-regulatory elements. Plant Mol Biol, 25: 429–436

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tackaberry, E.S., Wright, K.E., Dudani, A.K., Altosaar, I., Ganz, P.R. (2002). A Seed-Derived Oral Subunit Vaccine for Human Cytomegalovirus. In: Erickson, L., Yu, WJ., Brandle, J., Rymerson, R. (eds) Molecular Farming of Plants and Animals for Human and Veterinary Medicine. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2317-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2317-6_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6110-2

  • Online ISBN: 978-94-017-2317-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics