Skip to main content

Part of the book series: Developments in Hydrobiology ((DIHY,volume 140))

  • 112 Accesses

Abstract

A dynamic, process-oriented, deterministic and phosphorus-based model was developed to simulate the food web dynamics of Lake Ringsjön, in particular the long-term effects of biomanipulation in terms of reduction of omnivorous fish. The model contains 14 state variables, each with a differential equation describing sources and sinks of phosphorus. The state variables encompass piscivorous and omnivorous fish, zooplankton, phytoplankton, sediment and lake water. The model simulates densities of fish and phytoplankton adequately, both before and after biomanipulation, although the actual lake phytoplankton density varied more year-to-year compared to the model predictions. According to the model, a biomanipulation will cause an increase in zooplankton biomass. This prediction contradicts available field data from the lake which do not indicate any significant change in zooplankton biomass resulting from the performed biomanipulation. This discrepancy may partly be attributed to structural uncertainties in the model, related to the size structure of predators on zooplankton, i.e. the omnivorous fish community. The simulations suggest that phosphorus was routed along the pelagic food chain to a larger extent after omnivorous fish were removed, whereas the amount of phosphorus routed via the sediment and benthivorous fish decreased following fish removal. Accordingly, translocation of phosphorus from sediment to water by benthivorous fish is predicted to be substantially reduced by biomanipulation, resulting in an overall reduction in the release of new phosphorus to phytoplankton. Irrespective of simulated fishing effort (reduction of ≤0.5% d−1 for two years), the model predicts that P-release from the sediment and the external load will remain sufficiently high to force the system back to its previous state within a decade. Thus, recurrent biomanipulations and/or combined abatement strategies may be necessary to maintain low phytoplankton density. Known structural model uncertainties may however affect the robustness of such detailed predictions about the system resilience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersson, G., H. Berggren, G. Cronberg & C. Gelin, 1978. Effects of planktivorous and benthivorous fish on organisms and water chemistry in eutrophie lakes. Hydrobiologia 59: 9–15.

    Article  CAS  Google Scholar 

  • Benndorf, J., 1990. Conditions for effective biomanipulation: Conclusions derived from whole-lake experiments in Europe. Hydro-biologia 200 /201: 187–203.

    Article  Google Scholar 

  • Bergman, E., S. F. Hamrin & P. Romare, 1999. The effects of cyprinid reduction on the fish community. Developments in Hydrobiology. Hydrobiologia 404: 65–75.

    Google Scholar 

  • Boström, B., 1982. Recycling of nutrients from lake sediment. Ph.D. thesis, University of Uppsala, Sweden.

    Google Scholar 

  • Brabrand, Å., B. A. Faafeng & J. P. M. Nilssen, 1990. Relative importance of phosphorus supply to phytoplankton production: fish excretion versus external loading. Can. J. Fish. Aquas. Sci. 47: 364–372.

    Google Scholar 

  • Burns, C. W., 1968. The relationship between body size of filter-feeding Cladocera and the maximum size particle ingested. Limnol. Oceanogr. 13: 675–678.

    Google Scholar 

  • Carpenter, S. R., J. F. Kitchell & J. R. Hodgson, 1985. Cascading trophic interactions and lake productivity. BioScience 35: 634639.

    Google Scholar 

  • Carpenter, S. R., C. E. Kraft, R. Wright, X. He, P. A. Soranno J. R. Hodgson, 1992. Resilience and resistance of a lake phosphorus cycle before and after food web manipulation. Am. Nat. 140: 781–798.

    Google Scholar 

  • Craig, J. F., 1996. Pike. Biology and exploitation. Fish and Fisheries series 19. Chapman & Hall, London. U.K.

    Google Scholar 

  • Diehl, S., 1988. Foraging efficiency of three freshwater fishes: effects of structural complexity and light. Oikos 53: 207–214.

    Article  Google Scholar 

  • Funtowicz, S. O. J. R. Ravetz, 1992. The emergence of postnormal science. In R. Schomberg (ed.), Science, Politics and Morality. Scientific Uncertainty and Decision Making. Kluwer Academic Publishers: 85–123.

    Google Scholar 

  • Gallepp, G. W., 1979. Chironomid influence on phosphorus release in sediment-water microcosms. Ecology 60: 547–556.

    Article  CAS  Google Scholar 

  • Hamrin, S., 1999. Planning and execution of the fish reduction in Lake Ringsjön. Hydrobiologia 404: 59–63.

    Article  Google Scholar 

  • Hansson, L.-A., H. Annadotter, E. Bergman, S. F. Hamrin, E. Jeppesen, T. Kairesalo, E. Luokkanen, P-Å. Nilsson & Ma. Sgndergaard, 1998. Biomanipulation as an application of food chain theory: constraints, synthesis and recommendations for temperate lakes. Ecosystems 1: 558–574.

    Article  Google Scholar 

  • Hansson, L.-A., M. Enell & E. Bergman, 1999. Lake Ringsjön: its catchment area, its history and its importance. Hydrobiologia 404: 1–7.

    Article  Google Scholar 

  • Horppila, J., 1994. Interactions between roach (Ratilus rutilus (L.)) stock and water quality in Lake Vesijiirvi (southern Finland). Ph.D. thesis, University of Helsinki, Finland.

    Google Scholar 

  • Jasser, 1., 1995. The influence of macrophytes on a phytoplankton community in experimental conditions. Hydrobiologia 306: 2132.

    Article  Google Scholar 

  • Lamarra, V. A. Jr., 1975. Digestive activities of carp as a major contributor to the nutrient loading of lakes. Verh. Int. Ver. Limnol. 19: 2461–2468.

    Google Scholar 

  • Lammens, E. H. R. R., R. D. Galati, M.-L. Meijer E. van Donk, 1990. The first biomanipulation conference: a synthesis. Hydrobiologia 200 /201: 617–627.

    Google Scholar 

  • Lessmark, 0., 1983. Competition between perch (Percy fiuviatilis) and roach (Rutilas rutilus) in south Swedish lakes. Ph.D. thesis, Inst. of Limnology, Lund Univ., Lund, Sweden, 172 pp.

    Google Scholar 

  • Moss, B., J. Stansfield, K. Irvine. M. G. Perrow G. Phillips, 1996. Progressive restoration of a shallow lake: a 12-year experiment in isolation, sediment removal and biomanipulation. J. Appl. Ecology. 33: 71–86.

    Google Scholar 

  • Persson, A., 1997a. Effects of fish predation and excretion on the configuration of aquatic food webs. Oikos 79: 137–146.

    Article  CAS  Google Scholar 

  • Persson, A., 1997b, Phosphorus release by fish in relation to external and internal load. Limnol. Oceanogr. 42: 577–583.

    Google Scholar 

  • Persson, A. & A. Barkman, 1997. Modelling lake food web dynamics. In A. Persson, Consumption Patterns and Excretion in Aquatic Food Webs. Ph.D. thesis. Dept. of Ecology, Limnology, Lund University, Sweden.

    Google Scholar 

  • Persson, A. & L.-A. Hansson, 1999. Diet shift in fish following competitive release. Can. J. Fish. Aquat. Set, 56: 70–78.

    Google Scholar 

  • Persson, L., 1983. Food consumption and the significance of detritus and algae to intraspecific competition in roach (Rutilas rutilas) in a shallow eutrophie lake. Oikos 41: 118–125.

    Article  Google Scholar 

  • Persson, L., G. Andersson, S. F. Hamrin L. Johansson, 1988. Predator regulation and primary production along the productivity gradient of temperate lake ecosystems. In S. R. Carpenter (ed.), Complex Interactions in Lake Communities. Springer Verlag, New York, NY: 45–65.

    Chapter  Google Scholar 

  • Persson, L., S. Diehl, L. Johansson, G. Andersson S. F. Hamrin, 1991. Shift in fish communities along the productivity gradient of temperate lakes-patterns and the importance of size-structured interactions. J. Fish Biol. 38: 281–293.

    Article  Google Scholar 

  • Reynolds, C. S., 1984. The ecology of freshwater phytoplankton. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Rosenzweig, M. L., 1971. Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science 171: 385387.

    Google Scholar 

  • Sakamoto, M., 1966. Primary production by phytoplankton community in some Japanese lakes and its dependence on lake depth. Arch. Hydrobiol. 62: 1–28.

    Google Scholar 

  • Scavia, D., G. A. Lang & J. F. Kitchell, 1988. Dynamics of Lake Michigan plankton: a model evaluation of nutrient loading, competition, and predation. Can. J. Fish. Aquat. Sci. 45: 165–177.

    Google Scholar 

  • Scheffer, M., 1991. Fish and nutrient interplay determines algal biomass: a minimal model. Oikos 62: 271–282.

    Article  Google Scholar 

  • Scheffer, M., S. Rinaldi, A. Gragnani, L. R. Mur & E. H. van Nes, 1997. On the dominance of filamentous cyanobacteria in shallow, turbid lakes. Ecology 78: 272–282.

    Article  Google Scholar 

  • Schindler, D. E., J. F. Kitchell, X. He, S. R. Carpenter, J. R. Hodgson & K. L. Cottingham, 1993. Food weh structure and phosphorus cycling in lakes. Trans. Am. Fish. Soc. 122: 756–772.

    Google Scholar 

  • Schindler, D. E., J. F. Kitchell, X. He, S. R. Carpenter, J. R. Hodgson & K. L. Cottingham, 1996. Food weh structure and littoral zone coupling to pelagic trophic cascades. In G. A. Polis K. 0. Winemiller (eds), Food Webs: Integration of Patterns and Dynamics. Chapman & Hall, New York, NY: 96–105.

    Google Scholar 

  • Shapiro, J., 1990. Biomanipulation: the next phase — making it stable. Hydrobiologia 200 /201: 13–27.

    Article  Google Scholar 

  • Shapiro, J., V. Lamarra & M. Lynch, 1975. Biomanipulation: an ecosystem approach to lake restoration. In P. L. Brezonic J. L. Fox (eds), Proc. Symp. on Water Quality Management Through Biological Control. University of Florida: 85–96.

    Google Scholar 

  • Strand, J., 1999. The development of submerged macrophytes in Lake Ringsjön after Biomanipulation. Hydrobiologia 404: 113121.

    Google Scholar 

  • van Donk, E., M. P. Grimm, R. D. Gulati & J. P. G. Breteler, 1990. Whole-lake food-web manipulation as a means to study community interactions in a small ecosystem. Hydrobiologia 200 /201: 275–289.

    Article  Google Scholar 

  • Vanni, M. J., 1996. Nutrient transport and recycling by consumers in lake food webs: implications for algal communities. In G. A. Polis K. 0. Winemiller (eds.), Food Webs: Integration of Patterns and Dynamics. Chapman & Hall, New York, NY: 81–95.

    Google Scholar 

  • Vanni, M. J. & C. D. Layne, 1997. Nutrient recycling and herbivory as mechanisms in the ‘top-down’ effect of fish on algae in lakes. Ecology 78: 21–40.

    Google Scholar 

  • Vanni, M. J., C. D. Layne & S. E. Arnott, 1997. ‘Top-down’ trophic interactions in lakes: effects of fish on nutrient cycling. Ecology 78: 1–20.

    Google Scholar 

  • Vollenweider, A., 1976. Advances in defining critical loading levels for phosphorus in lake eutrophication. Mer. Ist. Ital. idrobiol. 33: 53–83.

    Google Scholar 

  • Wetzel, R. G. & R. A. Hough, 1973. Productivity and role of aquatic macrophytes in lakes: an assessment. Pol. Arch. Hydrobiol. 20: 9–19.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Persson, A., Barkman, A., Hansson, LA. (1999). Simulating the effects of biomanipulation on the food web of Lake Ringsjön. In: Hansson, LA., Bergman, E. (eds) Nutrient Reduction and Biomanipulation as Tools to Improve Water Quality: The Lake Ringsjön Story. Developments in Hydrobiology, vol 140. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2462-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2462-3_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5313-8

  • Online ISBN: 978-94-017-2462-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics