Skip to main content

Equilibrium phase conditions in shallow German lakes: How Cyanoprokaryota species establish a steady state phase in late summer

  • Conference paper
Phytoplankton and Equilibrium Concept: The Ecology of Steady-State Assemblages

Part of the book series: Developments in Hydrobiology ((DIHY,volume 172))

  • 311 Accesses

Abstract

In 2000, a field study in two shallow, polytrophic lakes (Langer See and Melangsee) in eastern Germany revealed an equilibrium state assemblage of Cyanoprokaryota in late summer. During 4 successive weeks in Langer See Planktothrix agardhii (Gom.) Anagn. et Kom., Aphanizomenon gracile (Lemmerm.) Lemmerm. and Pseudanabaena limnetica Lemmerm. were more than 80% of the standing biomass of phytoplankton, and their cumulative biovolume was around 33 mm3 l−1 ((±3.2 SD). In Melangsee, the very small Limnothrix species L. amphigranulata (Van Goor) Meffert was the most common species, accompanied by Pseudanabaena limnetica andPlanktothrix agardhii. For 3 weeks, their cumulative biovolume was about 23 mm3 l−1 ((±3.4 SD), which represented 75 – 82% of total biovolume. The dominant species all belong to the functional group S N defined by Reynolds (1997), except for A. gracile, which we suggest to be included in group S N . In both lakes mean light intensities ranged between 2.2 and 8.3 E m−2 d−1. Overall species spectra were very similar in both lakes, but dominance by Limnothrix and by Planktothrix in the respective lakes is observed repeatedly. The success of these species is discussed in the context of the habitat properties in August/September. Summer mixing events represented no disturbances in the sense of Connell (1978), since they do not interrupt the species dominance. More frequent mixing events and higher concentrations of dissolved nitrogen occurred in Langer See than in the more shallow, but wind protected Melangsee. In Langer See light deficient conditions were intensified by an increasing biomass of P. agardhii, and this species probably benefited from nutrient input by more frequent resuspension. The light deficiency also affected the diversity, expressed as Shannon—Wiener Index (H), which was reduced more in lake Langer See (H = 0.51) than in Melangsee (0.74) during steady state periods. Recognizing the important effects of mixing, we suggest an additional variable to describe habitat properties: the number of full mixing days as a proportion of total days of observation should help to discriminate between shallow habitats with intermittent mixing events, and those with more regularly mixing in summer period.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anagnostidis, K. & J. Komárek, 1988. Modern approach to the classification system of cyanophytes. 3. Oscillatoriales. Archiv für Hydrobiol. Supplement 80 1 /4: 327–472.

    Google Scholar 

  • Anagnostidis, K. & J. Komárek, J., 1985. Modern approach to the classification system of cyanophytes. 1. Introduction. Archiv für Hydrobiol. Supplement 711 /2: 291–302.

    Google Scholar 

  • Barica, J., H. Kling & J. Gibson, 1980. Experimental manipulation of algal bloom composition by nitrogen addition. Can. J. Fish. aquat. Sci. 37: 1175–1183.

    Article  CAS  Google Scholar 

  • Behrendt, H. & B. Nixdorf, 1993. The carbon balance of phytoplankton production and loss processes based on in situ measurements in a shallow lake. Int. Rev. ges. Hydrobiol. 78: 439–458.

    Article  Google Scholar 

  • Connell, J., 1978. Diversity in tropical rain forests and coral reefs. Science 199: 1304–1310.

    Article  Google Scholar 

  • Dokulil, M. T. & J. Mayer, 1996. Population dynamics and photosynthetic rates of a Cylindrospermopsis — Limnothrix association in a highly eutrophic urban lake, Alte Donau, Vienna, Austria. Algol. Stud. 83: 179–195.

    Google Scholar 

  • Hindák, F., 1988. Planktonic species of two related genera Cylindrospermopsis and Anabaenopsis from Western Slovakia. Algological Studies 50–53: 283–302.

    Google Scholar 

  • Horecká, M. & J. Komárek, 1979. Taxonomic position of three planktonic blue-green algae from the genera Aphanizomenon and Cylindrospermopsis. Preslia 51: 289–312.

    Google Scholar 

  • Kohl, J.-G., G. Dudel, M. Schlangstedt & H. Kühl, 1985. Zur morphologischen Abgrenzung von Aphanizomenon fios-aquae RALF ex. BORN. et FLAH. and A. gracile ( LEMM.) LEMM., Archiv für Protistenkunde 130: 119–131.

    Article  Google Scholar 

  • Komárková, J. & R. Tavera, 2003. Steady state of phytoplankton assemblage in the tropical Lake Catemaco (Mexico). Hydrobiologia 502 ( Dev. Hydrobiol. 172 ): 187–196.

    Article  Google Scholar 

  • Komárek, J. & K. Anagnostidis, 1989. Modern approach to the classification system of cyanophytes. 4. Nostocales. Archiv für Hydrobiol. Supplement 82: 247–345.

    Google Scholar 

  • Meffert, M.-E., 1988. Limnothrix Meffert nov. gen.. Archiv für Hydrobiol. Supplement 80: 269–276.

    Google Scholar 

  • Meffert, M.-E., R. Oberhäuser & J. Overbeck, 1981. Morphology and Taxonomy of Oscillatoria redekei ( Cyanophyta ). British Phycol. J. 16: 107–114.

    Article  Google Scholar 

  • Mischke, U., 2003. Cyanobacteria associations in shallow polytrophic lakes: Influence of environmental factors. Acta Oecologica, 24: 11–23.

    Article  Google Scholar 

  • Naselli-Flores, L. & R. Barone, 2003. Steady-state assemblages in a Mediterranean hypertrophic reservoir. The role of Microcystis ecomorphological variability in maintaining an apparent equilibrium. Hydrobiologia 502 ( Dev. Hydrobiol. 172 ): 133–143.

    Article  Google Scholar 

  • Nixdorf, B. & R. Deneke, 1997. Why’very shallow’ lakes are more successful opposing reduced nutrient loads? Hydrobiologia 342 /343: 269–284.

    Article  Google Scholar 

  • Nixdorf, B. U. Mischke & J. Rücker, 2003. Phytoplankton assemblages and steady state in deep and shallow eutrophic lakes — an approach to differentiate the habitat properties of Oscillatoriales. Hydrobiologia 502 ( Dev. Hydrobiol. 172 ): 111–121.

    Article  Google Scholar 

  • Padisák, J., 1997. Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review of its ecology. Archiv für Hydrobiolie Supplement 107: 563–593.

    Google Scholar 

  • Padisák, J. & C. S. Reynolds, 1998. Selection of phytoplankton associations in Lake Balaton, Hungary, in response to eutrophication and restoration measures, with special reference to the cyanoprokaryotes. Hydrobiologia 384: 41–53.

    Google Scholar 

  • Reynolds C., V. L. M. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002, Towards a functional classification of the freshwater phytoplankton. J. Plankton Res. 24: 417–428.

    Article  Google Scholar 

  • Reynolds, C. S., 1997. Vegetation processes in the pelagic: a model for ecosystem theory, Ecology Institute, d-21385 Oldendorf/Luhe, Germany.

    Google Scholar 

  • Rott, E., 1981. Some results from phytoplankton counting intercal- ibrations. Schweizerische Zeitschrift für Hydrol. 43: 34–62.

    Google Scholar 

  • Rücker, J., C. Wiedner & P. Zippel, 1997. Factors controlling the dominance of Planktothrix agardhii and Limnothrix redekei in eutrophic shallow lakes. Hydrobiologia 342 /343: 107–115.

    Article  Google Scholar 

  • Schmitt, M. & B. Nixdorf, 1999. Spring phytoplankton dynamics in a shallow eutrophic lake. Hydrobiologia 408 /409: 269–276.

    Article  Google Scholar 

  • Sommer, U., J. Padisák, C. S. Reynolds & P. Juhász-Nagy, 1993. Hutchinsons heritage: the diversity-disturbance relationship in phytoplankton. Hydrobiologia 249: 1–7.

    Article  Google Scholar 

  • Stoyneva, M. P., 2003. Steady-state phytoplankton assemblages in shallow Bulgarian wetlands. Hydrobiologia 502 ( Dev. Hydrobiol. 172 ): 169–176.

    Article  Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt. int. Ver. theor. angewan. Limnol. 9: 1–38.

    Google Scholar 

  • Wiedner, C., 1999. Toxische und nicht-toxische Cyanobakterien in Gewässern der Scharmützelseeregion: Ihr Vorkommen in Gewässern unterschiedlicher Trophie und Morphometrie und Steuermechanismen ihrer Dynamik in polymiktischen Flachseen. Dr, Thesis. Brandenburgischen Technischen University: 1–131.

    Google Scholar 

  • Wiedner, C., B. Nixdorf., R. Hinze, B. Wirsing, U. Neumann & J. Weckesser, 2002. Regulation of cyanobacteria and microcystin dynamics in polymictic shallow lakes. Archiv für Hydrobiol. 155: 383–400.

    CAS  Google Scholar 

  • Zevenboom, W. & L. R. Mur, 1980. N2-fixing cyanobacteria: Why they do not become dominant in Dutch hypertrophic ecosystems?. In Barica, J. & L. R. Mur (eds), Hypertrophic Ecosystems, Developments in Hydrobiology 2. Dr W. Junk Publishers, The Hague: 123–130.

    Google Scholar 

  • Zippel, P., 1996. Phytoplanktonsukzession und -dynamik in den Gewässern des Scharmützelseegebietes. In Nixdorf, B. & A. Kleeberg. Gewässerreport (Teil II). Aktuelle Reihe 2/96: 44–60. Published by University of Cottbus.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Mischke, U., Nixdorf, B. (2003). Equilibrium phase conditions in shallow German lakes: How Cyanoprokaryota species establish a steady state phase in late summer. In: Naselli-Flores, L., Padisák, J., Dokulil, M.T. (eds) Phytoplankton and Equilibrium Concept: The Ecology of Steady-State Assemblages. Developments in Hydrobiology, vol 172. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2666-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2666-5_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6433-2

  • Online ISBN: 978-94-017-2666-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics