Skip to main content

Steady-state assemblages in a Mediterranean hypertrophic reservoir. The role of Microcystis ecomorphological variability in maintaining an apparent equilibrium

  • Conference paper
Phytoplankton and Equilibrium Concept: The Ecology of Steady-State Assemblages

Part of the book series: Developments in Hydrobiology ((DIHY,volume 172))

Abstract

Lake Arancio is a hypertrophic Mediterranean man-made lake, located on the southern coast of Sicily. Its artificial origin and the climate make it a very dynamic environment, strongly characterised by very wide water-level fluctuations. These vertical water movements interfere with the thermal stability of the water body often causing the breaking of the thermocline in mid-summer. In addition, the summer level-decrease influences the nutrient dynamics and modifies the zmix/zeu ratio. All these modifications were observed to support a high environmental variability, which was reflected by the richness of its phytoplankton composition and by its dynamics. Nevertheless, an investigation carried out from March 2001 to March 2002 showed that the assemblage was strongly dominated by a few species, one by one. In particular, two different Microcystis morphotypes dominated the assemblage from mid-April till the beginning of October. The prolonged dominance of these ‘species’ should suggest that a steady state condition took place in Lake Arancio during spring and summer 2001. This is in contrast with previous investigations, which showed high diversity values especially occurring in the period of strong environmental instability when the continuous dewatering caused the breaking of the thermocline in the middle of summer. Nevertheless, this dominant species showed a very wide morphological variability and alternated among ‘more S’, ‘S’, and ‘R’ (sensu Reynolds) ecotypes. The ever-changing morphological features suggest a different ecological behaviour of the species involved. They seem to confirm that the environmental variability of Mediterranean reservoirs sustains high diversity values, even though this diversity has to be sought in the amplitude of morphological plasticity of one or a few species, rather than in the coexistence of a variety of species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, T. F. H.& T. B. Starr, 1982. Hierarchy: perspectives for ecological complexity. University of Chicago Press, Chicago.

    Google Scholar 

  • Barone, R.& L. Naselli-Flores, 1994. Phytoplankton dynamics in a shallow, hypertrophic reservoir ( Lake Arancio, Sicily). Hydrobiologia 289: 199–214.

    Google Scholar 

  • Grime, J. P., J. G. Hodgson & R. Hunt, 1996. Comparative plant ecology. A functional approach to common British species. Chapman Hall, New York

    Google Scholar 

  • Harris, G. P., 1986. Phytoplankton Ecology. Strucure, function and fluctuation. Chapman and Hall, London.

    Google Scholar 

  • Hillebrand, H., C.-D. Dûrselen, D. Kirschtel, U. Pollingher T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35: 403–424.

    Article  Google Scholar 

  • Kennedy, R. H., T. Cole, W. Boyd & K. Barko, 2002. Operational influences on the limnological characteristics of reservoirs: a model study. Extended Abstracts of the 4th International Conference on Reservoir Limnology and Water Quality, Èeské Budìjovice, Czech Republic, August 12–16, 2002. pp. 168–170.

    Google Scholar 

  • Komárek, J.& P. Marvan, 1992. Morphological differences in natural populations of the genus Botryococcus ( Chlorophyceae ). Archiv für Protistenkunde 141: 65–100.

    Google Scholar 

  • Komárek, J., J. Komárkova-Legnerová, C. Sant’Anna, M.T. de Paiva Azevedo & P.A.C. Senna, 2002. Two common Microcystis species from tropical America. Cryptogamie/Algologie 23: 159–177.

    Google Scholar 

  • Margalef, R., 1978. Life forms of phytoplankton as survival alternatives in an unstable environment. Oceanologica Acta 1: 493–509.

    Google Scholar 

  • Margalef, R., 2000. Exosomatic structures and captive energies relevant in succession and evolution. In Jørgensen S. E. (ed.), Thermodynamics and ecological modelling. Lewis Publishers, Boca Raton: 3–15.

    Google Scholar 

  • Naselli-Flores, L. 2003. Man-made lakes in Mediterranean semiarid climate: The strange case of Dr Deep Lake and Mr Shallow Lake. Hydrobiologia (in press).

    Google Scholar 

  • Naselli-Flores, L.& R. Barone, 1998. Phytoplankton dynamics in two reservoirs with different trophic state (Lake Rosamarina and Lake Arancio, Sicily, Italy). Hydrobiologia 369 /370: 163–178.

    Article  Google Scholar 

  • Naselli-Flores, L.& R. Barone, 2000. Phytoplankton dynamics and structure: a comparative analysis in natural and man-made water bodies of different trophic state. Hydrobiologia 438: 65–74.

    Article  CAS  Google Scholar 

  • Naselli-Flores, L., J. Padisák, M. T. Dokulil & I. Chorus, 2003. Equilibrium/steady-state concept in phytoplankton ecology. Hydrobiologia 502 ( Dev. Hydrobiol. 172 ): 395–403.

    Google Scholar 

  • Naselli-Flores, L., R. Barone & R. Mosello, 2003b. Eutrophication control by lime addition: a preliminary approach in Sicilian reservoirs. Hydrobiologia (in press).

    Google Scholar 

  • Padisák, J., 1992. Seasonal succession of phytoplankton in a large, shallow lake ( Balaton, Hungary) –- a dynamic approach to ecological memory, its possible role and mechanisms. J. Ecol. 80: 217–230.

    Google Scholar 

  • Padisák, J., C. S. Reynolds & U. Sommer (eds), 1993. Intermediate Disturbance Hypothesis in Phytoplankton Ecology. Developments in Hydrobiology 81. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Padisák, J., F. Barbosa, R. Koschel & L. Krienitz, 2003. Deep layer cyanoprokaryota maxima in temperate and tropical lakes. In Koschel R. D. Adams(eds), Lake Stechlin. An Approach to Understanding an Oligotrophic Lowland Lake. Archiv für Hydrobiologie/Advances in Limnology (in press).

    Google Scholar 

  • Reynolds, C. S., 1997. Vegetation processes in the pelagic: A model for ecosystem theory, Ecology Institute, D-21385 Oldendorf, Germany.

    Google Scholar 

  • Reynolds, C. S.& E. G. Bellinger, 1992. Patterns of abundance and dominance of the phytoplankton of Rostherne Mere, England: evidence from an 18-year data set. Aquat. Sci. 54: 10–36.

    Google Scholar 

  • Reynolds, C. S., G. H. M. Jaworski, H. A. Cmiech & G. F. Leedale, 1981. On the annual cycle of the blue-green alga, Microcystis aeruginosa Kütz. emend. Elenkin. Phil. Trans. r. Soc. Lond. Ser B 293: 419–477.

    Google Scholar 

  • Reynolds, C. S., V. L. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. J. Plankton Res. 24: 417–428.

    Article  Google Scholar 

  • Robarts, R. D.& T. Zohary, 1984. Microcystis aeruginosa and underwater light attenuation in a hypertrophic lake (Hartbeespoort Dam, South Africa). J. Ecol. 72: 1001–1017.

    Google Scholar 

  • Scheffer, M., S. Reinaldi, J. Huisman & F. J. Weissing, 2003. Why plankton communities have no equilibrium: solutions to the paradox. Hydrobiologia 491: 9–18.

    Article  Google Scholar 

  • Senese, F. A., 2003. http://antoine.frostburg.edu/chem/sene se/javascript/water-density.html.

  • Sommer, U., J. Padisák, C. S. Reynolds & P. Juhász-Nagy, 1993. Hutchinson’s heritage: the diversity-disturbance relationship in phytoplankton. Hydrobiologia 249: 1–7.

    Article  Google Scholar 

  • Straškraba, M., I. Dostálková, J. Hejzlar & V. Vyhnálek, 1995. The effect of reservoirs on phosphorus concentration. Int. Rev. ges. Hydrobiol. 80: 403–413.

    Google Scholar 

  • Van Rijn, J.& M. Shilo, 1985. Carbohydrate fluctuations, gas vacuolation, and vertical migration of scum-forming cyanobacteria in fishponds. Limnol. Oceanogr. 30: 1219–1228.

    Google Scholar 

  • Wallace, B. B.& D. P. Hamilton, 1999. The effect of variations in irradiance on buoyancy regulation in Microcystis aeruginosa. Limnol. Oceanogr. 44: 1127–1138.

    Google Scholar 

  • Wallace, B. B.& D. P. Hamilton, 2000. Simulation of water-bloom formation in the cyanobacterium Microcystis aeruginosa. J. Plankton Res. 22: 1127–1138.

    Article  Google Scholar 

  • Wallace, B. B., M. C. Bailey & D. P. Hamilton, 2000. Simulation of vertical position of buoyancy regulating Microcystis aeruginosa in a shallow eutrophic lake. Aquat. Sci. 62: 320–333.

    Google Scholar 

  • Whittaker, R. H., 1975. Communities and Ecosystems. Macmillan, New York.

    Google Scholar 

  • Whittaker, R. H.& S. A. Levin, 1977. The role of mosaic phenom- ena in natural communities. Theor.Pop. Biol. 12: 117–139.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Naselli-Flores, L., Barone, R. (2003). Steady-state assemblages in a Mediterranean hypertrophic reservoir. The role of Microcystis ecomorphological variability in maintaining an apparent equilibrium. In: Naselli-Flores, L., Padisák, J., Dokulil, M.T. (eds) Phytoplankton and Equilibrium Concept: The Ecology of Steady-State Assemblages. Developments in Hydrobiology, vol 172. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2666-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2666-5_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6433-2

  • Online ISBN: 978-94-017-2666-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics