Skip to main content

Ecological and taxonomic observations on the flagellate algae characterising four years of enclosure experiments in Lake Tovel (Southern Alps)

  • Conference paper
Phytoplankton and Equilibrium Concept: The Ecology of Steady-State Assemblages

Part of the book series: Developments in Hydrobiology ((DIHY,volume 172))

Abstract

Lake Tovel (Italian Alps, Brenta Dolomites, 1178 m a.s.l.), with a dimictic mixolimnion, is a meromictic and oligotrophic mountain lake, once notorious for the summer reddening of its waters due to dinoflagellate blooms that ceased suddenly in 1964. Since 1997 the Museo Tridentino di Scienze Naturali has been carrying out in situ experiments in order to understand the factors regulating the blooms. Experiments were carried out in different types of enclosures to test the reaction of phytoplankton to phosphorus enrichment and light reduction, with special reference to Glenodinium sanguineum Marchesoni, the dinoflagellate responsible for the reddening. The aim of the present contribution is to study the ecology of other flagellate algae typical of Lake Tovel, by analysing the data from the enclosure experiments. Particular attention is given to competition for resources, the comparison with G. sanguineum and some interesting taxonomic observations. The four flagellate taxa selected for this investigation were Gymnodinium uberrimum (Allman) Kofoid & Swezy, Dinobryon cf. sociale var. americana (Brunnthaler) Bachmann, Campylomonas sp. and Tetraselmis sp. Number of individuals and biovolume calculated for each taxon during the experiments were statistically related to NO3-N and TP concentrations, water temperature, pH and oxygen saturation. A prompt and positive response to P-enrichment was found in all experiments for both G. sanguineum and G. uberrimum. However, the first taxon showed a pronounced development only when nutrients were coupled with high light intensities, while the latter appeared to be a better competitor in low light intensities and low water temperature. The behaviour of Tetraselmis sp. was similar to that of G. sanguineum, while the development pattern of Campylomonas sp. was similar to that of G. uberrimum. D. sociale did not show a clear relationship either to nutrient enrichment or weather conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abu-Rezq, T. S., L. Al-Musallam, J. Al-Shimmari & P. Dias, 1999. Optimum production conditions for different high quality marine algae. Hydrobiologia 403: 97–107

    Article  Google Scholar 

  • Baldi, E., 1941. Ricerche idrobiologiche sul Lago di Tovel–Memorie del Museo di Storia Naturale della Venezia Tridentina 6: 1–279.

    Google Scholar 

  • Barone, R. & L. Naselli-Flores, 2003. Distribution and seasonal dynamics of cryptomonads in Sicilian water bodies. Hydrobiologia 502 ( Dev. Hydrobiol. 172 ): 325–329.

    Google Scholar 

  • Cantonati, M., M. Tardio, M. Tolotti & A. Boscaini, 2002. Caratteristiche di mesocosmi utilizzati per lo studio del fitoplancton. Atti XV Convegno Nazionale del Gruppo d’Ecologia di Base “G. Gadio”, Trento, 5–7 maggio 2001. Studi Trentini di Scienze Naturali –- Acta biologica 78: 167–172.

    Google Scholar 

  • Cantonati, M., M. Tardio, M. Tolotti & F. Corradini, 2003. Blooms of the dinoflagellate Glenodinium sanguineum obtained during enclosure experiments in Lake Tovel. J. Limnol. In press.

    Google Scholar 

  • Chorst, R. J., & B. Riemann, 1994. Storm-simulated enzymatic decomposition of organic matter in benthonic/pelagic coastal mesocosms. Mar. Ecol. Prog. Ser. 108: 185–192.

    Google Scholar 

  • Corradini, F., G. Flaim & V. Pinamonti, 2001. Five years of limnological observations on Lake Tovel (1995–1999): some considerations and comparisons with past data. Proc. Ital. Ass. Oceanol. Limnol. 14: 209–218.

    Google Scholar 

  • Dodge, J. D., P. Mariani, A. Paganelli & R. Trevisan, 1987. Fine structure of the red-bloom dinoflagellate Glenodinium sanguineum, from Lake Tovel (N. Italy). Algol. Stud. 47: 125–138.

    Google Scholar 

  • Dokulil, M., 1988. Seasonal and spatial distribution of chryptophycaen species in the deep, stratifying, alpine lake Mondsee and their role in the food web. Hydrobiologia 161: 185–201

    Article  CAS  Google Scholar 

  • Eloranta, P., 1989. Ecological studies on the ecology of the genus Dinobryon in Finnish lakes. Supplement to Nova Hedwigia 95: 99–109.

    Google Scholar 

  • Eccel, E., 2000. Commento all’annata meteorologica 1999 in Trentino. Natura alpina 51: 19–28.

    Google Scholar 

  • Halac, S., M. Felip, L. Camarero, S. Sommaruga-Wögrath, R. Psenner, J. Catalan & R. Sommaruga, 1997. An in situ experiment to test the solar UVB impact on plankton in a high altitude mountain lake. I. Lack of effect on phytoplankton species composition and growth. J. Plankton Res. 19: 1671–1686.

    Google Scholar 

  • Hill, D. R. A., 1991. A revised circumscription of Cryptomonas ( Cryptophyceae) based on examination of Australian strains. Phycologia 30: 170–180.

    Google Scholar 

  • Holen, D. A. & M. E. Boraas, 1996. Mixotrophy in chrysophytes. In Craig, D., C. D. Sandgren, J. P. Smol and J. Kristiansen (eds.), Chrysophyte Algae. Ecology, Phylogeny and Development. University Press, Cambridge: 119–140.

    Google Scholar 

  • I. A. S. M. A., 1998. Caratteristiche limnologiche dei laghi del Trentino. Rapporto 1997. Istituto Agrario di San Michele a/A. 176 pp.

    Google Scholar 

  • I. R. S. A. - C. N. R, 1994. Metodi analitici per le acque. Istituto di Ricerca sulle Acque, Roma. Quaderni.

    Google Scholar 

  • Jansson, M., P. Blomqvist & A. Johnsson, 1996. Nutrient limitation of bacterioplankton, autotrophic and mixotrophic phytoplankton, and heterotrophic nanoflagellates in Lake Örtriistet. Limnol. Oceanog. 41: 1552–1559.

    Google Scholar 

  • Javornický, P., 2001. Freshwater Rhodomonads (cryptophyceae). Algol. Stud. 102: 93–116.

    Google Scholar 

  • Javornický, P., 2003. Taxonomic notes on some freshwater planktonic Cryptophyceae based on light microscopy. Hydrobiologia 502 ( Dev. Hydrobiol. 172 ): 271–283.

    Article  Google Scholar 

  • Larsen, J. & A. Sournia, 1991. The diversity of heterotrophic dinoflagellates. In Patterson, D. J. and J. Larsen (eds), The Biology of Free-Living Heterotrophic Flagellates. Clarendon Press, Oxford: 313–332.

    Google Scholar 

  • Lepistö, L. & A.-L. Holopainen, 2003. Occurrence of Cryptophyceae and katablepharids in boreal lakes. Hydrobiologia 502 ( Dev. Hydrobiol. 172 ): 307–314.

    Article  Google Scholar 

  • Lorenzen, C. J., 1967. Determination of chlorophyll and phaeopigments: spectrophotometric equations. Limnol. Oceanogr. 12: 343–346.

    Google Scholar 

  • Lund, J. W. G., G. Kipling and E. D. LeCren., 1958. The inverted microscope method for estimating algae number and statistical basis of estimating by counting. Hydrobiologia 11: 143–170.

    Article  Google Scholar 

  • Menezes, M. & G. Novarino, 2003. How diverse are planktonic cryptomonads in Brazil? Advantages and difficulties of a taxonomic-biogeographical approach. Hydrobiologia 502 ( Dev. Hydrobiol. 172 ): 297–306.

    Google Scholar 

  • Molina, E., E. Martinez, S. Sanchez, F. Garcia & A. Contreras, 1991. The influence of temperature and the initial N:P ratio on the growth of microalgae Tetraselmis sp. Proc. Biochem. 26: 183–187

    Article  Google Scholar 

  • Novarino, G., 1991. Observations on some new and interesting Cryptophyceae. Nordic J. Bot. 11: 599–611.

    Google Scholar 

  • Novarino, G., I. A. N Lucas. & S. Morrall, 1994. Observation on the genus Plagioselmis (Cryptophyceae). Cryptogamie, Algologie 15: 87–107.

    Google Scholar 

  • Novarino, G., D. K. Mills & F. Hannah, 1997. Pelagic flagellate populations in the southern North Sea, 1988–89.1. Qualitative observations. J. Plankton Res. 19: 1081–1109.

    Google Scholar 

  • Novarino, G., 2003. A companion to the identification of cryptomonad flagellates (Cryptophyceae = Cryptomonadea). Hydrobiologia 502 ( Dev. Hydrobiol. 172 ): 225–270.

    Google Scholar 

  • Okauchi, M. & K. Kawamura, 1997. Optimum medium for large-scale culture of Tetraselmis tetrathele. Hydrobiologia 358: 217– 222

    Google Scholar 

  • Paganelli, A., 1992. Lake Tovel (Trentino): limnological and hydro-biological aspects. Mem. Ist. ital. Idrobiol. 50: 225–257.

    Google Scholar 

  • Paris, G., G. Rossetti, M. Cattadori & G. Giordani, 1995. Interazioni fitoplancton-zooplancton in un lago oligotrofico d’alta quota (Lago Scuro Parmense): risultati di esperimenti con enclosures. Atti della Società Italiana di Ecologia 16: 467–470.

    Google Scholar 

  • Pechlaner, R., 1971. Factors that control the production rate biomass of phytoplankton in high mountain lakes. Mitt. int. Ver. theor. angewan. Limnol. 19: 125–145.

    Google Scholar 

  • Pithart, D., 1995. Ecological study of Cryptophyceae from two pools in the Luinice river floodplain. Dissert. Institute of Botany, Czech Academy of Sciences, Trebon. 108 pp.

    Google Scholar 

  • Porter, K. G., 1988. Phagotrophic phytoflagellates in microbial food webs. Hydrobiologia 159: 89–97.

    Article  Google Scholar 

  • Premazzi, G., G. Chiaudani, A. Pereira, A. C. Cardoso & E. Rodari, 1999. A restoration programme in Italy: the experience of lake Varese–Proceedings of the 8th International Conference on the Conservation and Management of Lakes, 17–21 May 1999, Copenhagen–Denmark S 14A - 2.

    Google Scholar 

  • Ravera, O., 1989. Lake ecosystem degradation and recovery studied by the enclosure method. In: Ravera, O. (ed.), Ecological Assessment of Environmental Degradation Pollution and Recovery, Elsevier, Amsterdam: 217–243.

    Google Scholar 

  • Ravera, O., 1990. The effects of hypolimnetic oxygenation in the shallow and eutrophic Lake Comabbio (Northern Italy) studied by ‘enclosure’. Int. Ver. theor. angewan. Limnol.: Verh. 24: 188– 194.

    Google Scholar 

  • Reynolds, C. S., 1984. The ecology of freshwater phytoplankton. Cambridge University Press, Cambridge. 384 pp.

    Google Scholar 

  • Reynolds, C. S., 1997. Vegetation processes in the pelagic: a model for ecosystem theory. In: Kinne O. (ed.), Excellence in Limnology 9. 371 pp.

    Google Scholar 

  • Riemann, B. & M. Sondergaard, 1986. Regulation of bacterial secondary production in two eutrophic lakes and experimental enclosures. J. Plankton Res. 6: 519–536.

    Article  Google Scholar 

  • Riemann, B., T. G. Nielsen, S. J. Horsted, P. K. Bjornsen & J. Pock-Steen, 1988. Regulation of phytoplankton biomass in estuarine enclosures. Mar. Ecol. Prog. Ser. 69: 171–178.

    Article  Google Scholar 

  • Rott, E., 1981. Some results from phytoplankton counting intercalibrations. Schweizerische Zeitschrift für Hydrologie 43: 35–62.

    Google Scholar 

  • Rott, E., 1988. Some aspects of the seasonal distribution of flagellates in mountain lakes. Hydrobiologia 161: 159–170.

    Article  Google Scholar 

  • Salonen, K. & M. Rosenberg, 2000. Advantages from diel vertical migration can explain the dominance of Gonyostamum semen ( Raphidophyceae) in a small, steephy-stratifical humic lake, J. Plankton Res. 22: 1841–1853.

    Article  Google Scholar 

  • Sokal, R. R. & F. J. Rohlf, 1981. Biometry. 2nd edition. Freeman and Co., New York. 859 pp.

    Google Scholar 

  • Skuja, H., 1948. Taxonomie des Phytoplanktons einiger Seen in Uppland, Schweden. Sym. Bot. Ups. 9: 1–399.

    Google Scholar 

  • Sommaruga, R., 2001. The role of solar UV radiation in the ecology of alpine lakes. J. Photochem. Photobiol. B: Biology 62: 35–42

    Google Scholar 

  • Stewart, A. J. & R. G. Wetzel, 1986. Cryptophytes and other microflagellates as couplers in planktonic community dynamics. Archiv für Hydrobiol. 106: 1–19

    Google Scholar 

  • Stolte, W., T. McCollin, A. A. M. Noordeloos & R. Riegman, 1994. Effect of nitrogen source on the size distribution within marine phytoplankton populations. J. exp. mar. Biol. Ecol. 184: 83–97

    Article  CAS  Google Scholar 

  • Stolte, W. & R. Riegman, 1995. The effect of phytoplankton cell size on transient state nitrate and ammonium uptake kinetics. Microbiology 141: 1221–1229

    Article  CAS  Google Scholar 

  • Tardio, M., M. Cantonati & M. Tolotti, 2001. Condizionamento meteorologico nello sviluppo del fitoplancton del Lago di Tovel (Trentino): indicazioni da ricerche in mesocosmi. XI Congresso Nazionale della Società Italiana di Ecologia, Sabaudia 12–14 settembre 2001. Atti 25: CD-rom.

    Google Scholar 

  • Tilzer, M., 1972. Dynamik und Produktivitat von Phytoplankton und pelagischen Bakterien in einem Hochgebirgssee ( Vorderer Finstertaler See, Osterreich). Archiv für Hydrobiol. 3: 201–273.

    Google Scholar 

  • Tilzer, M., 1973. Diurnal periodicity in the phytoplankton assemblage of a high mountain lake. Limnol. Oceanogr. 18: 15–30.

    Google Scholar 

  • Tolotti, M., M. Cantonati and F. Corradini, 1999. Investigating dinophyte blooms with P-enriched enclosures in a mountain lake (lake Tovel, Southern Alps, Italy). Proceedings of the 8th International Conference on the Conservation and Management of Lakes, 17–21 May 1999. Copenaghen, Denmark S16B-5.

    Google Scholar 

  • Tolotti, M., H. Thies, M. Cantonati, C. M. E. Hansen & B. Thaler, this volume. Flagellate algae (Chrysophyceae, Dinophyceae, Cryptophyceae) in 48 high mountain lakes of the northern and southern slope of the Eastern Alps: biodiversity, taxa distribution and their driving variables.

    Google Scholar 

  • Tomasi, G., 1989. Dall’immaginario al plausibile. Natura Alpina 40: 1–72.

    Google Scholar 

  • Tranvik, L. J., K. G. Porter & J. Mc N. Sieburth, 1989. Occurence of bacterivory in Cryptomonas, a common freshwater phytoplankter. Oecologia 78: 473–476.

    Article  Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton Methodik. Mitt. int. Ver. theor. angewan. Limnol. 9: 1–38.

    Google Scholar 

  • Van den Hoek, C., D. G. Mann & H. M. Jahns, 1995. Algae. An introduction to phycology. Cambridge university press. 627 pp.

    Google Scholar 

  • Vinebrooke, R. D. & P. R. Leavitt, 1999. Differential responses of littoral communities to ultraviolet radiation in an alpine lake. Ecology 80: 223–237.

    Article  Google Scholar 

  • Wetzel, R. R., 1983. Limnology. Saunders College Publishing. 341 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Tardio, M., Tolotti, M., Novarino, G., Cantonati, M. (2003). Ecological and taxonomic observations on the flagellate algae characterising four years of enclosure experiments in Lake Tovel (Southern Alps). In: Naselli-Flores, L., Padisák, J., Dokulil, M.T. (eds) Phytoplankton and Equilibrium Concept: The Ecology of Steady-State Assemblages. Developments in Hydrobiology, vol 172. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2666-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2666-5_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6433-2

  • Online ISBN: 978-94-017-2666-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics