Skip to main content

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 98))

Abstract

The plant cell wall is a highly organized composite of many different polysaccharides, proteins and aromatic substances. These complex matrices define the shape of each individual cell, and ultimately, they are the determinants of plant morphology. The fine structures of the major angiosperm cell wall polysaccharides have been characterized, but it is not well understood how these polysaccharides are assembled into a metabolically active architecture. Cell wall biogenesis and remodeling may be partitioned into six major stages of development (precursor synthesis, polymerization, secretion, assembly, rearrangement and disassembly), and to date, a handful of mutations have been identified that affect the composition and structure in each of these stages. To greatly augment this collection, we have initiated a program to use Fourier transform infrared spectroscopy as a high through-put screen to identify a broad range of cell-wall mutants of Arabidopsis and maize We anticipate that such mutants will be useful to probe the impact of the individual components and their metabolism on basic processes of plant growth and development. The structures of dicot and grass walls, the identification of representative cell wall mutants, and the use of a novel spectroscopic screen to identify many more cell wall mutants, are briefly reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

FTIR:

Fourier transform infrared

GAX:

glucuronoarabinoxylan

HGA:

homogalacturonan

RG:

rhamnogalacturonan

XET:

xyloglucan endo-transglycosylases

XyG:

xyloglucan

References

  • Akamatsu T, Hanzawa Y, Ohtake Y, Takahashi T, Nishitani K and Komeda Y 1999 Expression of endoxyloglucan transferase genes in acaulis mutants of Arabidopsis. Plant Physiol. 121, 715–721.

    Article  PubMed  CAS  Google Scholar 

  • Arabidopsis Genome Initiative 2000 Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815.

    Article  Google Scholar 

  • Arioli T, Peng L C, Betzner A S, Burn J, Wittke W et al. 1998 Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279, 717–720.

    Article  PubMed  CAS  Google Scholar 

  • Baskin T I, Betzner A S, Hoggart R, Cork A and Williamson, R E 1992 Root morphology mutants in Arabidopsis thaliana. Aust. J. Plant Physiol. 19, 427–437.

    Article  Google Scholar 

  • Benfey P N, Linstead P J, Roberts R, Schiefelbein J W, Hauser M T and Aeschbacher R A 1993 Root development in Arabidopsis - four mutants with dramatically altered root morphogenesis. Development 119, 57–70.

    PubMed  CAS  Google Scholar 

  • Bonin C P, Potter I, Vanzin G F and Reiter W-D 1997 The MUR1 gene of Arabidopsis thaliana encodes an isoform of GDP-omannose-4,6-dehydratase, catalyzing the first step in the de novo synthesis of GDP-L-fucose. Proc. Natl. Acad. Sci. U.S.A. 94, 2085–2090.

    Google Scholar 

  • Brummell D A, Catald C, Lashbrook, C C and Bennett A B 1997 A membrane-anchored E-type endo-l,4-ß-glucanase is localized on Golgi and plasma membranes of higher plants. Proc. Natl. Acad. Sci. U.S.A. 94, 4794–4799.

    Google Scholar 

  • Burget E G and Reiter W-D 1999 The mur4 mutant of Arabidopsis is partially defective in the de novo synthesis of uridine diphospho L-arabinose. Plant Physiol. 121, 383–389.

    Article  PubMed  CAS  Google Scholar 

  • Carpita N C 1996 Structure and biogenesis of the cell walls of grasses. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 445–476.

    Article  PubMed  CAS  Google Scholar 

  • Carpita N C and Gibeaut D M 1993 Structural models of the primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J. 3, 1–30.

    Article  PubMed  CAS  Google Scholar 

  • Carpita N and Vergara C 1998 A recipe for cellulose. Science 279, 672–673.

    Article  PubMed  CAS  Google Scholar 

  • Chen L-M, Carpita N C, Reiter W-D, Wilson R H, Jeffries C and McCann M C 1998 A rapid method to screen for cell wall mutants using discriminant analysis of Fourier transform infrared spectra. Plant J. 16, 385–392.

    Article  PubMed  CAS  Google Scholar 

  • Dolezal O and Cobbett C S 1991 Arabinose kinase-deficient mutant of Arabidopsis thaliana. Plant Physiol. 96, 1255–1260.

    Article  PubMed  CAS  Google Scholar 

  • Doong R L and Mohnen D 1998 Solubilization and characterization of a galacturonosyltransferase that synthesizes the pectic polysaccharide homogalacturonan. Plant J. 13, 363–374.

    Article  CAS  Google Scholar 

  • Ford C W and Hartley R D 1989 GC/MS characterization of cyclodimers from p-coumaric and ferulic acids by photodimerization–a possible factor influencing cell wall biodegradability. J. Sci. Food Agric. 46, 310–310.

    Article  Google Scholar 

  • Fleischer A, Titel C and Ehwald R 1998 The boron requirement and cell wall properties of growing and stationary suspension-cultured Chenopodium album L. cells. Plant Physiol. 117, 14011410.

    Google Scholar 

  • Fleming A J, McQueen Mason S, Mandel T, Kuhlemeier C 1997 Induction of leaf primordia by the cell wall protein expansion. Science 276, 1415–1418.

    Article  CAS  Google Scholar 

  • Fry S C, York W S, Albersheim P, Darvill A, Hayashi T et al. 1993 An unambiguous nomenclature for xyloglucan-derived oligosaccharides. Physiol. Plant. 89, 1–3.

    Article  CAS  Google Scholar 

  • Gibeaut D M and Carpita N C 1994 Biosynthesis of plant cell wall polysaccharides. FASEB J. 8, 904–915.

    PubMed  CAS  Google Scholar 

  • Iiyama K, Lam T B T and Stone B A 1994 Covalent cross-links in the cell wall. Plant Physiol. 104, 315–320.

    PubMed  CAS  Google Scholar 

  • Ishii T, Matsunaga T and Hayashi N 2001 Formation of rhamnogalacturonan II-borate dimer in pectin determines cell wall thickness of pumpkin tissue. Plant Physiol. 126, 1698–1705.

    Article  PubMed  CAS  Google Scholar 

  • Kemsley E K 1998 Discriminant Analysis of Spectroscopic Data. John Wiley and Sons, Chichester, U.K. 179 pp.

    Google Scholar 

  • Levy S, York W S, Stuikeprill R, Meyer B and Staehelin L A 1991 Simulations of the static and dynamic molecular conformations of xyloglucan–the role of the fucosylated side-chain in surface-specific side-chain folding. Plant J. 1, 195–215.

    Article  PubMed  CAS  Google Scholar 

  • Lolle S J, Berlyn G P, Engstrom E M, Krolikowski K M, Reiter W-D and Pruitt R E 1997 Developmental regulation of cell interactions in the Arabidopsis fiddleheadl mutant: A role for the epidermal cell wall and cuticle. Devel. Biol. 189, 311–321.

    Google Scholar 

  • Lukowitz W, Mayer U and Jurgens G 1996 Cytokinesis in the Arabidopsis embryo involves the syntaxin-related KNOLLE gene product. Cell 84, 61–71.

    Article  PubMed  CAS  Google Scholar 

  • McCann M C and Roberts K 1991 Architecture of the primary cell wall. In The Cytoskeletal Basis of Plant Growth and Form. Ed. C W Lloyd. pp. 109–129. Academic Press, London.

    Google Scholar 

  • McCann M C, Hammouri M, Wilson R, Belton P and Roberts K 1992 Fourier transform infrared microspectroscopy is a new way to look at plant cell walls. Plant Physiol. 100, 1940–1947.

    Article  PubMed  CAS  Google Scholar 

  • McCann M C, Chen L, Roberts K, Kemsley E K, Séné C, Carpita N C, Stacey N J and Wilson R H 1997 Infrared microspectroscopy: sampling heterogeneity in plant cell wall composition and architecture. Physiol. Plant. 100, 729–738.

    Google Scholar 

  • Nicol F, His I, Jauneau A, Vemhettes S, Canut H and Höfte H 1998 A plasma membrane-bound putative endo-1,4-ß-D-glucanase is required for normal wall assembly and cell elongation in Arabidopsis. EMBO J. 17, 5563–5576.

    Article  PubMed  CAS  Google Scholar 

  • Nishitani K 1995 Endo-xyloglucan transferase, a new class of transferase involved in cell wall construction. J. Plant Res. 108, 137–148.

    Article  CAS  Google Scholar 

  • Pear J R, Kawagoe Y, Schreckengost W E, Delmer D P, Stalker D M 1996 Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. Proc. Natl. Acad. Sci. U.S.A. 93, 12637–12642.

    Google Scholar 

  • Potikha T and Delmer D P 1995 A mutant of Arabidopsis thaliana displaying altered patterns of cellulose deposition. Plant J. 7, 453–460.

    Article  CAS  Google Scholar 

  • Ralph J, Grabber J G and Hatfield R D 1995 Lignin-ferulate cross-links in grasses - active incorporation of ferulate polysaccharide esters into ryegrass lignins. Carbohydr. Res. 275, 167–178.

    Google Scholar 

  • Reiter W-D 1998 Arabidopsis thaliana as a model system to study synthesis, structure and function of the plant cell wall. Plant Physiol. Biochem. 36, 167–176.

    Google Scholar 

  • Reiter W-D, Chapple C C S and Somerville C R 1993 Altered growth and cell walls in a fucose-deficient mutant of Arabidopsis. Science 261, 1032–1035.

    Article  PubMed  CAS  Google Scholar 

  • Reiter W-D, Chapple C and Somerville C R 1997 Mutants of Arabidopsis thaliana with altered cell wall polysaccharide composition. Plant J. 12, 335–345.

    Article  PubMed  CAS  Google Scholar 

  • Reiter W-D and Vanzin G F 2001 Molecular genetics of nucleotide sugar interconversion pathways in plants. Plant Mol. Biol. 47, 95–113.

    CAS  Google Scholar 

  • Reynolds J O, Eisses J F and Sylvester A W 1998 Balancing division and expansion during maize leaf morphogenesis: analysis of the mutant, warlyl. Development 125, 259–268.

    PubMed  CAS  Google Scholar 

  • Richmond T A and Somerville C R 2001 Integrative approaches to determining Csl function. Plant Mol. Biol. 47, 131–143.

    CAS  Google Scholar 

  • Rudall P J and Caddick L R 1994 Investigation of the presence of phenolic compounds in monocotyledonous cell walls using UV fluorescence microscopy. Ann. Bot. 74, 483–491.

    Article  CAS  Google Scholar 

  • Séné C F B, McCann M C, Wilson R H and Grinter R 1994 Fourier-transform Raman and Fourier-transform infrared spectroscopy — an investigation of five higher plant cell walls and their components. Plant Physiol. 106, 1623–163.

    PubMed  Google Scholar 

  • Smith B G and Harris P J 1999 The polysaccharide composition of Poales cell walls: Poaceae cell walls are not unique. Biochem. System Ecol. 27, 33–53.

    Article  CAS  Google Scholar 

  • Smith L G, Hake S and Sylvester AW 1996 The tangledl mutation alters cell division orientations throughout maize leaf development without altering leaf shape. Development 122, 481–489.

    PubMed  CAS  Google Scholar 

  • Staehelin L A and Moore I 1995 The plant Golgi apparatus–structure, functional organization and trafficking mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46, 261–288.

    Article  CAS  Google Scholar 

  • Taylor N G, Scheible W, Cutler S, Somerville C R and Turner S R 1999 The IRREGULAR XYLEM3 locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis. Plant Cell 11, 769–779.

    PubMed  CAS  Google Scholar 

  • Taylor N G, Laurie S and Turner S R 2000 Multiple cellulose synthase catalytic subunits are required for cellulose synthesis in Arabidopsis. Plant Cell 12, 2529–2539.

    PubMed  CAS  Google Scholar 

  • Thompson J E, Smith R C and Fry S C 1997 Xyloglucan undergoes interpolymeric transglycosylation during binding to the plant cell wall in vivo: Evidence from C-13/H-3 dual labelling and isopycnic centrifugation in caesium trifluoroacetate. Biochem J. 327, 699–708.

    PubMed  CAS  Google Scholar 

  • Turner S R and Somerville C R 1997 Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. Plant Cell 9, 689–701.

    PubMed  CAS  Google Scholar 

  • Vanzin G F, Madson M, Carpita N C, Raikhel N V, Keegstra K, Reiter W D 2002 The mur2 mutant of Arabidopsis thaliana lacks fucosylated xyloglucan because of a lesion in fucosyltransferase AtFUTI. Proc. Natl. Acad. Sci. USA 99, 3340–3345.

    Google Scholar 

  • Verica J A and Medford J I 1997 Modified MERI5 expression alters cell expansion in transgenic Arabidopsis plants. Plant Sci. 125, 201–210.

    Article  CAS  Google Scholar 

  • Willats W G T, McCartney L, Mackie W and Knox J P 2001 Pectin: cell biology and prospects for functional analysis. Plant Mol. Biol. 47, 9–27.

    Google Scholar 

  • Xu W, Purugganan M M, Polisensky D H, Antosiewicz D M, Fry S C and Braam J 1995 Arabidopsis TCH4, regulated by hormones and the environment, encodes a xyloglucan endotransglycosylase. Plant Cell 7, 1555–1567.

    PubMed  CAS  Google Scholar 

  • Zablackis E, Huang J, Muller B, Darvill A G and Albersheim P 1995 Structure of plant cell walls. 34. Characterization of the cell-wall polysaccharides of Arabidopsis thaliana leaves. Plant Physiol. 107, 1129–1138.

    Article  PubMed  CAS  Google Scholar 

  • Zablackis E, York W S, Pauly M, Bantus S, Reiter W-D, Chapple C C S, Albersheim P and Darvill A 1996 Substitution of L-fucose by L-galactose in cell walls of Arabidopsis murl. Science 272, 1808–1810.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas C. Carpita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Carpita, N.C., McCann, M.C. (2002). The functions of cell wall polysaccharides in composition and architecture revealed through mutations. In: Horst, W.J., et al. Progress in Plant Nutrition: Plenary Lectures of the XIV International Plant Nutrition Colloquium. Developments in Plant and Soil Sciences, vol 98. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2789-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2789-1_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6191-1

  • Online ISBN: 978-94-017-2789-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics